Exponentially Small Splitting in Hamiltonian Systems

  • Amadeu Delshams
  • Tere M. Seara
Part of the NATO ASI Series book series (NSSB, volume 331)

Abstract

We consider the exponentially small splitting of separatrices of analytic one-degree of freedom classical systems
$$ {H_0}(x,{\mkern 1mu} y){\mkern 1mu} = {\mkern 1mu} {y^2}/2{\mkern 1mu} + {\mkern 1mu} V(x) $$
(1)
under general rapidly periodic Hamiltonian perturbations.

Keywords

Periodic Orbit Hamiltonian System Invariant Manifold Unstable Manifold Stable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DS92]
    A. Delshams, T. M. Seara. An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum. Commun. Math. Phys., 150:433–463, 1992.CrossRefMATHMathSciNetADSGoogle Scholar
  2. [Fo91]
    E. Fontich. Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbation. Preprint, 1991.Google Scholar
  3. [Ge90]
    V.G. Gelfreich. Splitting of separatrices for the rapidly forced pendulum. Preprint, 1990.Google Scholar
  4. [HMS88]
    P. Holmes, J. Marsden, J. Scheurle. Exponentially small splittings of separatrices with applications to KAM theory and degenerate bifurcations. Contemporary Mathematics, 81:213–244, 1988.CrossRefMathSciNetGoogle Scholar
  5. [LST90]
    V.F. Lazutkin, I.G. Schachmannski, M.B. Tabanov. Splitting of separatrices for standard and semistandard mappings. Physica D, 40:235–248, 1990.CrossRefMathSciNetADSGoogle Scholar
  6. [Nei84]
    A.I. Neishtadt. The separation of motions in systems with rapidly rotating phase. J. Appl Math. Mech., 48(2): 133–139, 1984.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Amadeu Delshams
    • 1
  • Tere M. Seara
    • 1
  1. 1.Dep. de Matemàtica Aplicada IUniv. Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations