Advertisement

Numerical Integration of Hamiltonian Systems in the Presence of Additional Integrals: Application of the Observer Method

  • Andrzej J. Maciejewski
  • Jean-Marie Strelcyn
Part of the NATO ASI Series book series (NSSB, volume 331)

Abstract

The observer method introduced by Busvelle et al. (1993), is a simple idea that can be used to improve reliable numerical integration of a system of differential equations in the presence of first integrals. In the cited paper the observer method was already tested on some important examples like the Kepler problem and the Gavrilov-Shilnikov system.

Keywords

Point Vortex Maximal Relative Error Observer Method Kepler Problem Symplectic Integrator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aref H. and Pomprey N., 1982, Integrable and chaotic motions of four vortices I. The case of identical vortices, Proc. R. Soc. London A, 380, 359–387.CrossRefzbMATHADSGoogle Scholar
  2. Arkhangelsk Yu.A., 1977, Analytical Dynamics of the Rigid Body (in Russian), (Moscow: Nauka).Google Scholar
  3. Arnold V.I., Kozlov V.V. and Neishtadt A.I., 1988, Mathematical aspects of classical and celestial mechanics, in Arnold V.I. (Edit.) Dynamical Systems III, Encyclopaedia of Mathematical Sciences, 3, (Berlin: Springer Verlag).Google Scholar
  4. Busvelle E., Kharab R., Maciejewski A.J. and Strelcyn J.-M., 1993, Numerical Integration of Differential Equations in the Presence of First Integrals: Observer Method, preprint, Rouen University, March 1993.Google Scholar
  5. Butcher J.C., 1964, Implicit Runge-Kutta processes, Math. Comput., 18, 50–64.zbMATHMathSciNetGoogle Scholar
  6. Fomenko A.T., 1988, Integrability and nonintegrability in geometry and mechanics, (Dodrecht: Kluwer Academic Publishers).CrossRefzbMATHGoogle Scholar
  7. Golubev V.V., 1953, Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point (in Russian), (Moscow: Gostekhizdat). English translation by the Israel Programme od Scient. Transi. (Jerusalem, 1960).Google Scholar
  8. Hairer E., Norsett S.P. and Wanner G., 1987, Ordinary differential equations I, Nonstiff problem, (Berlin: Springer Verlag).Google Scholar
  9. Kozlov V.V., 1983, Integrability and nonintegrability in hamiltonian mechanics, Russian Math. Survey, 38(1), 1–76.CrossRefzbMATHADSGoogle Scholar
  10. Pullin D.I. and Saffman P.G., 1991, Long-time symplectic integration: the example of four vortex motion, Proc. R. Soc. London A, 432, 481–494.CrossRefzbMATHMathSciNetADSGoogle Scholar
  11. Sanz-Serna J.M., 1991, Symplectic integrators for Hamiltonian systems: an overview, Acta Numerica, (annual volume published by Cambridge University Press), 1, 243–286.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Andrzej J. Maciejewski
    • 1
  • Jean-Marie Strelcyn
    • 2
    • 3
    • 4
  1. 1.Institute of AstronomyNicolaus Copernicus UniversityToruńPoland
  2. 2.Département de MathématiquesUniversité de RouenMont Saint Aignan CedexFrance
  3. 3.Laboratoire AnalyseGéométrie et ApplicationsFrance
  4. 4.Département de MathématiquesInstitut GaliléeVilletaneuseFrance

Personalised recommendations