Biochemistry and Cell Biology of Angiotensin-Converting Enzyme and Converting Enzyme Inhibitors

  • Kathleen H. Berecek
  • Lin Zhang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 377)


Angiotensin I (AI), a nonactive decapeptide generated by action of the enzyme, renin, on a glycoprotein substrate, angiotensinogen, is converted to the active pressor octapeptide angiotensin II (AII) by an exopeptidase first identified and isolated in plasma by Skeggs et al.1 who accordingly named this angiotensin-converting enzyme (ACE). This enzyme was later found to be the same enzyme as Kininase II, and is able to hydrolyze bradykinin and various other peptides.2,3 Most of the conversion of circulating AI to AII occurs during passage through the lungs.4 However, this dipeptidyl carboxypeptidase has been found to be widely distributed throughout the body as a membrane bound ectoenzyme on the surface of vascular endothelial cells and epithelial cells of many organs.5–7


Angiotensin Converting Enzyme Cardiac Hypertrophy Angiotensin Converting Enzyme Gene Plasma Angiotensin Converting Enzyme Dipeptidyl Carboxypeptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Skeggs, L. T. Kahn, J. R., Shumway, N. P., The preparation and function of the hypertensin-converting enzyme, J. Exp. Med., 103, 295–299, 1956.PubMedCrossRefGoogle Scholar
  2. 2.
    Yang, H. Y. T., Erdos, E. G., Levin Y, A dipeptide carboxypeptidase that converts AI and inactivates bradykinin, Biochem. Biophys. ACTA, 214, 374–376, 1970.PubMedCrossRefGoogle Scholar
  3. 3.
    Erdos, E. G., Skidgel, R. A., Structure and functions of human AI converting enzyme (kininase II), Biochem. Soc. Trans. 13, 42–44, 1985.PubMedGoogle Scholar
  4. 4.
    Ng, K. K. R, Vane, J. R., Conversion of AI to AII., Nature 216, 762–766, 1967.PubMedCrossRefGoogle Scholar
  5. 5.
    Caldwell, P. R. B., Seegal, B. C, Hsu, K. C, Das, M., Soffer, R. L., Angiotensin-converting enzyme: Vascular endothelial localization, Science 191, 1050–1051, 1976.PubMedCrossRefGoogle Scholar
  6. 6.
    Ryan, U. S., Ryan, J. W., Whitaker, C, Chiu, A., Localization of ACE (kininase II): II. Immunocytochemistry and immunofluorescence., Tissue Cell 8, 125–145, 1976.PubMedCrossRefGoogle Scholar
  7. 7.
    Erdos, E. G., Skidgel, R. A., The AI converting enzyme, Laboratory Investigation 56, 345–348, 1987.PubMedGoogle Scholar
  8. 8.
    Cushman, D. W., Ondetti, M.A., Inhibitors of ACE for treatment of hypertension, Biochem. Pharmacol. 29:1871–1877, 1980.PubMedCrossRefGoogle Scholar
  9. 9.
    Johnston, C. I., Jackson, B. J., Larmour, I., et al. Plasma enalapril levels and hormonal effects after short-and long-term administration in essential hypertension, Br. J. Clin. Pharm. 18: 233S–239S, 1984.CrossRefGoogle Scholar
  10. 10.
    Schwartz, J. B., Taylor, A., Abernathy, D., et al. Pharmacokinetics and pharmacodynamics of enalapril in patients with congestive heart failure and patients with hypertension, J. Cardiovasc. Pharm. 7,(4): 767–776, 1985.CrossRefGoogle Scholar
  11. 11.
    Gavras, I. and Gavras H., The use of ACE inhibitors in Hypertension, in ACE Inhibitors, Kostis, J. B., Felice E. A., Eds., Alan R. Liss, Inc,. New York, 93–113, 1987.Google Scholar
  12. 12.
    Kostis, J. B. and Felice, E. A., Eds., ACE Inhibitors, Alan R. Liss, Inc., New York, 1987.Google Scholar
  13. 13.
    MacGregor, G. A. and Sever, P. S., Eds. Current Advances in ACE Inhibition, Churchill-Livingston, Edinburgh, 1989.Google Scholar
  14. 14.
    Flick E, Bussie R and Auch-Schwelk W (eds), Control of vascular tone by bradykinin and angiotensin converting enzyme. J Cardiovascular Pharmacol 20 (Suppl 9), 1992.Google Scholar
  15. 15.
    Dal Palu C. Magnani B and Zanchetti A, eds, Hypertension: Organ damage and ACE inhibition. J Cardiovascular Pharmacol 22(Suppl 1), 1993.Google Scholar
  16. 16.
    Ball SG, and Lopez-Navano F, eds. The role of ACE inhibition in heart failure and atherosclerosis. J. Cardiovasc. Pharmacol 22 (Suppl 9), 1993.Google Scholar
  17. 17.
    Raizada MK, Phillips MI and Sumners C, eds, Cellular and Molecular biology of the renin-angiotensin system. CRC Press, INC. Boca Raton, Florida, 1993.Google Scholar
  18. 18.
    Skeggs, L. T., Dorer, F. E., Kahn, J. R., Lintz, K. E., Levine, M., Experimental renal hypertension: The discovery of the renin-AII system, in Biochemical Regulation of Blood Pressure, Soffer, R. L., Ed., John Wiley and Sons, New York, 3–34, 1981.Google Scholar
  19. 19.
    Kostis, J. B., DeFelice, E. A., Pianko, L. J., The renin-angiotensin system, in ACE Inhibitors., Kostis, J. B. and Felice E. H., Eds., Alan R. Liss, Inc., New York, 1–18, 1987.Google Scholar
  20. 20.
    Ondetti, M. A., Cushman, D. W., Enzymes of the renin-angiotensin system and their inhibitors, Ann. Rev. Biochem. 51, 283–308, 1982.PubMedCrossRefGoogle Scholar
  21. 21.
    Cushman, D. W., Ondetti, M. A., Inhibitors of angiotensin-converting enzyme, Prog. Med. Chem., 17, 41–104, 1980.PubMedCrossRefGoogle Scholar
  22. 22.
    Skidgel, R. A., Engelbrecht, S., Johnson, A. R., Erdos, E. G., Hydrolysis of substance P and neurotensin by converting enzyme and neutral endopeptides, Peptides 5, 769–776, 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    Skidgel, R. A., Erdos, E. G., Novel activity of human AI converting enzyme: Release of the NH2 — and COOH-terminal tripeptides from the luteinizing hormone-releasing hormone, Proc. Natl. Acad. Sci., USA, 82, 1025–1029, 1985.PubMedCrossRefGoogle Scholar
  24. 24.
    Strittmatter, S. M., Thiele, E. A., Kapiloff, M. S., Synder, S. H., A rat brain isoenzyme of angiotensin-converting enzyme: Unique specificity for amidated peptide substrates, J. Biol. Chem. 260, 9825–9832, 1985.PubMedGoogle Scholar
  25. 25.
    Skidgel, R. A., Erdos, E. A., The broad substrate specificity of human AI converting enzyme, Clin, and Exp. Hypert. A9 (2 & 3), 243–259, 1987.CrossRefGoogle Scholar
  26. 26.
    Soubrier F. Wei L, Hubert C, Clauser E, Alhenc-Gelas F and Corvol F. Molecular biology of the angiotensin I converting enzyme: II Structure and Function. Gene polymorphism and clinical implications. J Hypertension 11:599–604, 1993.CrossRefGoogle Scholar
  27. 27.
    Wei L, ALhenc-Gelas F, Corvol P, Clauser E. The two homologous domains of the human angiotensin I converting enzyme are both catalytically active: J Biol Chem 266:9002–9008, 1991.PubMedGoogle Scholar
  28. 28.
    Bunning, P., Holmquist, B., Riordan, J. F., Functional residues at the active site of ACE, Biochem. Biophys. Res. Comm., 83, 1442–1449, 1978.PubMedCrossRefGoogle Scholar
  29. 29.
    Johnston, C. I., Kohzuki, M., ACE: Localization and inhibition, in Current Advances in ACE Inhibition, MacGregor, G. A., Sever, P. S., Eds., Churchill-Livingston, Edinburgh, 3–7, 1989.Google Scholar
  30. 30.
    Roth, M., Weitzman, A. F., Piquilloud, Y, Converting enzyme content of different tissues of the rat, Experientia, [Abstract], 1247, 1969.Google Scholar
  31. 31.
    Cushman, D. W., Cheung, H. S., Concentration of angiotensin-converting enzyme in tissues of the rat, Biochem. Biophys. Acta, 250, 261–265, 1971.PubMedCrossRefGoogle Scholar
  32. 32.
    Miyazaki, M., Okunishi, H., Mishimura, K., Toda, N., Vascular angiotensin-converting enzyme activity in man and other species, Clin. Science, 66, 39–45, 1984.Google Scholar
  33. 33.
    Jackson, B., Cubela, R., Johnston, C, Angiotensin converting enzyme (ACE) characterization by 125I-MK351A binding studies of plasma and tissue ACE during variation of salt status in the rat, J. Hypertens., 4, 759–765, 1986.PubMedCrossRefGoogle Scholar
  34. 34.
    Wilson, S. K., Lynch, D. R., Snyder, S. H., Angiotensin-converting enzyme labelled with 3H-captopril: Tissue localization and changes in different models of hypertension in the rat, J. Clin. Invest., 80, 841–851, 1987.PubMedCrossRefGoogle Scholar
  35. 35.
    Okunishi, H., Miyazaki, M., Okamura, T., Toda, N., Different distribution of two types of All-generating enzymes in the aortic wall, Biochem. Biophysical Res. Comm., 149, 1186–1192, 1987.CrossRefGoogle Scholar
  36. 36.
    Velletri, P. Bean, B. L., The effect of captopril on rat aortic angiotensin-converting enzyme, J. Cardiovasc. Pharmacol, 4, 315–325, 1982.PubMedCrossRefGoogle Scholar
  37. 37.
    Saye, J. A., Singer, H. A., Peach, M. J., Role of endothelium in conversion of AI to AII in rabbit aorta, Hypertension, 6, 216–221, 1984.PubMedGoogle Scholar
  38. 38.
    Strittmatter, S. T., Lo, M. M. S., Javitch, J. A., Synder, S. H., Autoradiographic visualization of angiotensin-converting enzyme in rat brain with (3H) captopril: Localization to a striatonigral pathway, in Proc. Natl. Acad. Sci., USA, 81, 1599–1603, 1984.PubMedCrossRefGoogle Scholar
  39. 39.
    Correa, F. A., Plunkett, L. M., Saavedra, J. M., Hichens, M., Quantitative autoradiographic determination of angiotensin-converting enzyme (kininase II) binding in individual rat brain nuclei with 124I-351A, a specific enzyme inhibitor, Brain Res., 347(1): 192–195, 1985.PubMedCrossRefGoogle Scholar
  40. 40.
    Chai, S. Y., Mendelsohn, F. A. O., Paxinos, G., Angiotensin converting enzyme in rat brain visualized by quantitative in vitro autoradiography., Neuroscience, 2, 615–627, 1987.CrossRefGoogle Scholar
  41. 41.
    Yang, H. Y. T., Neff, N. H., Distribution and properties of ACE of rat brain, J. Neurochem., 19, 2243–2250, 1972.Google Scholar
  42. 42.
    Rix, E., Ganten, D., Schull, B., Unger, T., Taugner, R., Converting enzyme in the chorioid plexus, brain and kidney: Immunocytochemical and biochemical studies in rats, Neurosci. Lett., 22, 125–130, 1981.PubMedCrossRefGoogle Scholar
  43. 43.
    Paul, M., Printz, M. P., Harms, E., Unger, T., Lang, R. E., Ganten, D., Localization of renin (ED 3.4.23) and converting enzyme (EC in nerve endings of rat brain, Brain Res., 334 (2): 315–324, 1985.PubMedCrossRefGoogle Scholar
  44. 44.
    Koshiya, K., Okada, M., Imai, K., Kato, T., Tanka, R., Hatanaka, H., Kato, T., Localization of angiotensin-converting enzyme, prolylendopeptidase and other peptidase in cultured neuronal or glial cells, Neurochem Int., 7, 125–130, 1985.PubMedCrossRefGoogle Scholar
  45. 45.
    Clemens, D. L., Okamura, T., Inagami, T., Subcellular localization of angiotensin-converting enzyme in cultured neuroblastoma cells, J. Neurochem., 47,(6): 1837–1842, 1986.PubMedCrossRefGoogle Scholar
  46. 46.
    Fabris, B., Jackson, B., Cubela, R., Mendelsohn, F.A.O., Johnston, C. I., Mendelsohn, F. A. O., Angiotensin converting enzyme in the rat heart: Studies of its inhibition in vitro and ex vivo., Clin Exp Pharmacol Physiol, 16:309–313, 1989.PubMedCrossRefGoogle Scholar
  47. 47.
    Erdos, E. G., Schulz, W. W., Gafford, J. T., Defendini, R., Neutral metalloendopeptidase in human male genital tract. Comparison to angiotensin I-converting enzyme, Lab. Invest., 52, 437–447, 1985.PubMedGoogle Scholar
  48. 48.
    Campbell, D. J., Circulating and tissue angiotensin systems, J. Clin. Invest., 79, 1–6, 1987.PubMedCrossRefGoogle Scholar
  49. 49.
    Sen, G. C, Thekkamkara, T. J., Kumar, R. S., ACE: Structural relationship of the testicular and pulmonary forms, J. Cardiovasc. Pharm., 16 (Suppl 4):S4–S8, 1990.Google Scholar
  50. 50.
    El-Dorry, H., Bull, H. G., Iwata, K., Thornberry, N. A., Cordes, E. H., Soffer, R. L., Molecular and catalytic properties of rabbit testicular dipeptidyl carboxypeptidase, J. Biol. Chem., 257, 14128–14133, 1982.PubMedGoogle Scholar
  51. 51.
    El-Dorry, H., Pickett, C. B., MacGregor, J. S., Soffer, R. L., Tissue-specific expression of mRNAs for dipeptidyl carboxypeptidase isozymes, Proc. Natl Acad. Sci., USA, 79, 4295–4297, 1982.PubMedCrossRefGoogle Scholar
  52. 52.
    Soubrier, F., Alhenc-Gelas, F., Hubert, C. et al., Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning, Proc. Natl. Acad. Sci. 85, 9386–9390, 1988.PubMedCrossRefGoogle Scholar
  53. 53.
    Bernstein, K. E., Martin, B. M., Bernstein, E. A., Linton, J., Striker, L., Striker, G., The isolation of angiotensin-converting enzyme cDNA, J Biol. Chem., 263(23), 11021–11024, 1988.PubMedGoogle Scholar
  54. 54.
    Roy, S. N., Kusari, J., Soffer, R. L., Lai, C. Y, Sen G. C, Isolation of cDNA clones of rabbit ACE: Identification of two distinct mRNAs for the pulmonary and the testicular isozymes, Biochem. Biophys. Res. Commun., 155, 678–684, 1988.PubMedCrossRefGoogle Scholar
  55. 55.
    Kumar, R. S., Kusari, J., Roy, S. N., Soffer, R. L., Sen G. C., Structure of testicular ACE: A segmental mosaic isozyme, J. Biol. Chem., 264, 16754–16758, 1989.PubMedGoogle Scholar
  56. 56.
    Lattion, A. L., Soubrier, F., Allegrini, J., Hubert, C., Corvol, P., Alhenc-Gelas, F., The testicular transcript of the AI-converting enzyme encodes for the ancestral, non-duplicated form of the enzyme, FEBS Lett., 252, 99–104, 1989.PubMedCrossRefGoogle Scholar
  57. 57.
    Ehlers, M. R. W., Fox, E. A., Strydom, D. A., Riordan, J. F., Molecular cloning of human testicular angiotensin-converting enzyme: The testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme, Proc. Natl Acad. Sci. Vol., USA, 86, 7741–7745, 1989.CrossRefGoogle Scholar
  58. 58.
    Hooper NM, Keen J, Pappin DJC, Turner AJ Pig kidney angiotensin converting enzynme: purification and characterization of amphiphatic and hydrophilic forms of the enzyme establishes C-terminal anchorage to the plasma membrane. Biochem J 247: 85–93, 1987.PubMedGoogle Scholar
  59. 59.
    Huggins, C. G., Thampi, N. S., A simple method for determination of Angiotensin I converting enzyme, Life Sci., 7, 633–639, 1968.PubMedCrossRefGoogle Scholar
  60. 60.
    Cheung, H.S., Cushman, D. W., Inhibition of homogenous angiotensin-converting enzyme of rabbit lung by synthetic venom peptides of Bothrops Tararaed, Biochem. Biophys. Acta, 293, 451–463, 1973.CrossRefGoogle Scholar
  61. 61.
    Dorer, F. E., Kahn, J. R. Lentz, K. E., Skeggs, L. T., Purification and properties of angiotensin-converting enzyme from hog lung, Circ. Res., 31, 356–366, 1972.PubMedCrossRefGoogle Scholar
  62. 62.
    Oparil, S., Koemer, T., O’Donoghue, J. K., Structural requirements for substrates and inhibitors of angiotensin I converting enzyme in vivo and in vitro, Circ. Res., 34, 19–26, 1973.CrossRefGoogle Scholar
  63. 63.
    King, S. J., Booyse, F. M., Lin, P. H. Traylor, M., Markates, A. J., Oparil, S., Hypoxia stimulates endothelial cell angiotensin converting enzyme antigen synthesis, Am. J. Physiol. (256) Cell Physiol, 25, C1231–C1238, 1989.Google Scholar
  64. 64.
    Cushman, D. W., Cheung, H. S., Spechophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung, Biochem. Pharmacol, 20, 1637–1648, 1971.PubMedCrossRefGoogle Scholar
  65. 65.
    DelVecchio, P. J., Smith, J.R., Expression of angiotensin converting enzyme activity in cultured pumonary artery endothelial cells. J. Cell Physiol., 108,337–345, 1981.CrossRefGoogle Scholar
  66. 66.
    Krulewitz, A. H., Fanburg, B. L., Stimulation of bovine endothelial cell angiotensin I converting enzyme activity by cyclic AMP-related agents, J Cell Physiol., 129, 147–150, 1986.PubMedCrossRefGoogle Scholar
  67. 67.
    Jackson, R. M., Narkates, A. J., Oparil, S., Impaired pulmonary conversion of angiotensin I to angiotensin II in rats exposed to chronic hypoxia, J. Appl. Physiol., 60, 1121–1127, 1986.PubMedGoogle Scholar
  68. 68.
    Krulewitz, A. H., Fanburg, B. L., The effect of oxygen tension on the in vitro production and release of angiotensin converting enzyme by bovine pulmonary artery endothelial cells, Am. Rev. Respir. Dis., 130, 866–869, 1984.PubMedGoogle Scholar
  69. 69.
    Forstuma, T., Tikkanen, I., Gronhagen-Riska, C, Fyhrquist, F., Dissociation of the effect of captopril on blood pressure and angiotensin converting enzyme in serum and lungs of spontaneously hypertensive rats, Acta Pharmacol. et. Toxicol., 49, 416–421, 1981.Google Scholar
  70. 70.
    Fyhrquist, F., Gronhagen-Riska, C, Hortling, L., Forslund, T., Tikkanen, I., Klockars, M., The induction of angiotensin converting enzyme by its inhibitors, Clin. Exp. Hyper., A5, 1319–1330, 1983.CrossRefGoogle Scholar
  71. 71.
    King, S. J., Oparil, S., Berecek, K. H., Neuronal angiotensin converting enzyme (ACE) gene expression is increased by converting enzyme inhbitors (CEI), Mol. Cell. Neurosci. 2, 13–20, 1991.PubMedCrossRefGoogle Scholar
  72. 72.
    Schunkert, H., Hirsch, A. T., Pinto, Y., Pelletier, P., Jacob, H., Remme, W. J., Ingelfinger, J. R., Dzau, V. J., Feedback regulation of angiotensin converting enzyme mRNA and activity by angiotensin II, Circulation, 82, 230, 1990.Google Scholar
  73. 73.
    Rigat, B., Hubert C, Alheng-Gelas, F., Cambien, F., Corvol, P., Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86:1343–1346, 1990.PubMedCrossRefGoogle Scholar
  74. 74.
    Hilbert, P. Lindpainter, K., Beckmann, J.S., Serikawa, T., Soubrier, F. Dubay, C, et al, Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature. 353:521–528, 1991.PubMedCrossRefGoogle Scholar
  75. 75.
    Jacob, H.E., Lindpainter, K., Lincoln, S.E., Kusumi, K., Bunker, R.E., Mao, Y.P., et al, Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell. 67:213–224, 1991.PubMedCrossRefGoogle Scholar
  76. 76.
    Zee, Ryl., Lou, Y., Griggiths, L.R., Morris, B.J., Association of a polymorphism of the angiotensin I-converting enzyme gene with essential hypertension. Biochem.Biophys.Res. Commun. 184:9–15, 1992.PubMedCrossRefGoogle Scholar
  77. 77.
    Cambin F., Poirier O, LeCerf L, Evans A, Cambou J-P et al. Deletion polymorphism in the gene for angiotensin converting enzyme ia a potent risk factor for myocardial infarction. Nature 359:641–644, 1992.CrossRefGoogle Scholar
  78. 78.
    Ferreira, S. H., A bradykinin-potentiating factor (BPF) present in the venom of Bothrops jararaca, Brit. J. Pharmacol., 24, 163–169, 1965.PubMedGoogle Scholar
  79. 79.
    Ondetti, M. A., Williams, N. J., Sabo, E. F., Pluscec, J., Weaver, E. R., Kocy, O., Angiotensin-converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure, and synthesis, Biochemistry, 10, 4033–4039, 1971.PubMedCrossRefGoogle Scholar
  80. 80.
    Engel, S. L., Schaeffer, T. R., Gold, B. I., Rubin, B., Inhibition of pressor effects of angiotensin I and augmentation of depressor effects of bradykinin by synthetic peptides, Proc. Soc. Exp. Biol. Med., 140, 240–244, 1972.PubMedCrossRefGoogle Scholar
  81. 81.
    Engel, S. L., Schaeffer, T. R., Waugh, M. H., Rubin, B., Effects of the nonapeptide SQ 20,881 on blood pressure of rats with experimental renovascular hypertension, Proc. Soc. Exp. Biol. Med., 143, 483–487, 1973.PubMedCrossRefGoogle Scholar
  82. 82.
    Muirhead, E. E., Brooks, B., Arora, K. K., Prevention of malignant hypertension by the synthetic peptide SQ 20,881, Lab. Invest., 30, 129–135, 1974.PubMedGoogle Scholar
  83. 83.
    Gavras, H., Brunner, H. R., Laragh, J. H., Sealey, J. E., Gavras, I., Vukovich, R. A., An ACE inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients, New Eng. J. Med., 291, 817–821, 1974.PubMedCrossRefGoogle Scholar
  84. 84.
    Gavras, H., Faxon, D. P., Berkoben, J., et al., Angiotensin-converting enzyme inhibition in patients with congestive heart failure, Circulation, 58, 770–776, 1978.PubMedCrossRefGoogle Scholar
  85. 85.
    Curtiss, C, Cohn, J. N., Vrobel, T., Franciosa, J. A., Role of the renin-angiotensin system in the systemic vasoconstriction of chronic congestive heart failure, Circulation, 58, 763–770, 1978.PubMedCrossRefGoogle Scholar
  86. 86.
    Gavras, H., Andrews, P., Papadakis, N., Reversal of experimental delayed cerebral vasospasm by angiotensin-converting enzyme inhibition, J. of Neurosurg., 55, 884–888, 1981.CrossRefGoogle Scholar
  87. 87.
    Ondetti, M. A., Rubin, B., Cushman, D. W., Design of specific inhibitors of angiotensin-converting enzyme: New class of orally active antihypertensive agents, Science, 196, 441–444, 1977.PubMedCrossRefGoogle Scholar
  88. 88.
    Cushman, D. W., Cheung, H. S., Sabo, E. F., Ondetti, M. A., Design of potent competitive inhibitors of angiotensin-converting enzyme, Biochemistry, 16, 5484–5491, 1977.PubMedCrossRefGoogle Scholar
  89. 89.
    Antonaccio, M, Cushman, D., Drugs inhibiting the renin-angiotensin system. Fed. Proc, 40, 2275–2284, 1981.PubMedGoogle Scholar
  90. 90.
    Migdalof, B. H., et al, Evidence for dynamic interconversion of captopril and its disulfide metabolites in vivo, Fed. Proc., 39, 757, (Abstract) 1980.Google Scholar
  91. 91.
    Case, D. B., Atlas, S. A., Laragh, J. H., Sealey, J. E., Sullivan, P. A., McKinstry, D. N., Clinical experience with blockade of the renin-angiotensin-aldosterone system with an oral converting enzyme inhibitor (SQ 14,225; captorpil) in hypertensive patients, Prog. Cardiovasc. Dis., 21, 195–206, 1978.PubMedCrossRefGoogle Scholar
  92. 92.
    Jenkins, A. C., McKinstry, D. N., Review of clinical studies of hypertensive patients treated with captopril, Med. J. Aust. (Spec. Suppl), 32, 1979.Google Scholar
  93. 93.
    Gavras, H., Brunner, H. R., Turini, G. A., Kershaw, G. R., Tifft, C. P., Cuttelod, S., Gavras, I., Vukovich, R. A., McKinstry, D. N., Antihypertensive effect of the oral ACE inhibitor SQ 14,225 in man, N. Engl. J. Med., 298, 991–995, 1978.PubMedCrossRefGoogle Scholar
  94. 94.
    Fröhlich, E. D., ACE inhibitor: Present and future, Hypertension, 13, 1125–1130, 1989.CrossRefGoogle Scholar
  95. 95.
    Bauer, J. H., ACE inhibitors, Am. J. Hypertension, 3 (4): 331–337, 1990.CrossRefGoogle Scholar
  96. 96.
    Patchett, A. A., Harris, E., Tristram, E. W., et al. A new class of angiotensin-converting enzyme inhibitors, Nature, 288, 280–283, 1980.PubMedCrossRefGoogle Scholar
  97. 97.
    Vlasses, P. H., Larijani, G. E., Conner, D. P., et al. Enalapril, a nonsulfhydryl angiotensin-converting enzyme inhibitor, Clin. Pharmacol. 4, 27–40, 1985.Google Scholar
  98. 98.
    Sweet, C. S., Pharmacological properties of the converting enzyme inhibitor, enalpril maleate (MK-421), Fed. Proc. 42, 167–170, 1983.PubMedGoogle Scholar
  99. 99.
    Petrillo, E. W., Ondetti, M. A. Angiotensin-converting enzyme inhibitor: medicinal chemistry and biological actions, Med. Res. Rev. 2, (1): 1–41, 1982.PubMedCrossRefGoogle Scholar
  100. 100.
    Ondetti, M. A., Cushman, D. W., Angiotensin-converting enzyme inhibitor: Biochemical properties and biological action, CRC Crit. Rev. Biochem. 16, 381–411, 1984.PubMedCrossRefGoogle Scholar
  101. 101.
    Wyvratt, M. J., Patchett, A. A., Recent developments in the design of angiotensin-converting enzyme inhibitor, Med. Res. Rev. 5, 483–531, 1985.PubMedCrossRefGoogle Scholar
  102. 102.
    Kostis, J., Raia, J. J., Jr., DeFelice, E. A., Barone, J. A., Detter, R. G., Comparative clinical pharmacology of ACE inhibitors, in Angiotensin Converting Enzyme Inhibitors, Kostis, J. B., DeFelice, E. A., Eds., Alan R. Liss, Inc., New York, 19–54, 1987.Google Scholar
  103. 103.
    DeFelice, E. A., Kostis, J. B., New ACE inhibitors, in Angiotensin Converting Enzyme Inhibitors, Kostis, J. B., DeFelice, E. A., Eds., Alan R. Liss, Inc., 213-261,1987.Google Scholar
  104. 104.
    Cushman, D. W., Ondetti, M. A., Gordon, E. M., Natarajean, S., Karanewsky, D. S., Krapcho, J., Petrillo, E. W., Jr., Rational design and biochemical utility of specific inhibitors of ACE, J. Cardiovasc. Pharmacol. 10 (Suppl 7), S17–S30, 1987.PubMedCrossRefGoogle Scholar
  105. 105.
    Messerli F. H., Orens, S., Grossman, E., Left ventricular hypertrophy and antihypertensive therapy, Drugs 35 (Suppl 5) 27–33, 1988.PubMedCrossRefGoogle Scholar
  106. 106.
    Sullivan, P. A., Kellerher, M. Twomey, M., Dineen, M., Effects of converting enzyme inhbitor on blood pressure, plasma-renin activity and plasma-aldosterone in hypertensive diabetics compared to patients with essential hypertension, J. Hypertens., 3, 359–363, 1985.PubMedCrossRefGoogle Scholar
  107. 107.
    Zannad, F., The emerging role of ACE inhibitors in the treatment of cardiovascular disease, J. Cardiovasc. Pharm. 15 (Suppl 2), S1–S5, 1990.CrossRefGoogle Scholar
  108. 108.
    Cushman, D. W., Wang, F. L., Fung, W. C, et al., Comparison in vitro, ex vitro and in vivo of the actions of seven structurally diverse inhibitors of angiotensin converting enzyme (ACE), Br. J. Clin. Pharmacol. 28, 115S–131S, 1989.PubMedCrossRefGoogle Scholar
  109. 109.
    Cohen, M. L., Kurz, K. D., Schenck, K. W., Tissue angiotensin-converting enzyme inhibition as an index of the disposition of enalapril (MK-421) and metabolite MK-422, J. Pharmacol, Exp. Ther., 226 (1), 192–196, 1983.Google Scholar
  110. 110.
    Unger, T. H., Ganten, D., Lang, R. E., Pharmacology of CEI: new aspect, Clinical and Experimental Hypertension A5, (7/8), 1333–1354, 1983.CrossRefGoogle Scholar
  111. 111.
    Waeber, B., Nussberger, J., Brunner H. R., Angiotensin-Converting Inhibitors in Hypertension, in Hypertension: Pathophysiology, Diagnosis, and Management, Laragh, J. H., Brenner, B. M., Eds., Raven Press, Ltd., New York, Chapter 140,2209–2232, 1990.Google Scholar
  112. 112.
    De Silva, P. E., Husain, A., Smeby, R. R., Khairallah, P. A., Measurement of immunoreactive angiotensin peptides in rat tissues: some pitfalls in angiotensin II analysis, Anal. Biochem, 174, 80–87, 1988.PubMedCrossRefGoogle Scholar
  113. 113.
    Nussberger, J., Brunner, D. B., Waeber, B., Brunner, H. R., True versus immunoreactive angiotensin II in human plasma, Hypertension, 7 (Suppl I), I–1–1–7, 1985.Google Scholar
  114. 114.
    Nussberger, J, Brunner, D. B., Waeber, B., Brunner, H. R., Specific measurement of angiotensin metabolites and in vitro generated angiotensin II in plasma, Hypertension, 8, 476–482, 1986.PubMedCrossRefGoogle Scholar
  115. 115.
    Unger, T., Gohlke, P., Paul, M., Rettig, R., Tissue renin-angiotensin systems: Fact or fiction? J. Cardiovasc. Pharmacol, 18 (Suppl 2), S20–S25, 1991.PubMedGoogle Scholar
  116. 116.
    Gavras, H., Brunner, H. R., Turini, G. A., Kershaw, G. R., Fiffi, C. P., Cuttelod, S., Vukovich, R. A., McKinstry, D. N., Antihypertensive effect of oral angiotensin converting enzyme inhibitor SQ 14225 in man, N. Engl J. Med, 298, 991–995, 1978.PubMedCrossRefGoogle Scholar
  117. 117.
    Brunner, H. R., Gavras, H, Waeber, B, Kershaw, G.R., Turinai, G.A., Vukovich, R. A., McKinstry, D. N. Gavras, I. Oral angiotensin-converting enzyme inhibitor in long term treatment of hypertensive patients, Ann. Intern. Med., 90, 19–23, 1979.PubMedCrossRefGoogle Scholar
  118. 118.
    Case, D. B., Atlas, S. A., Laragh, J. H., Sullivan, P. A., Sealey, J. E., Use of first dose response or plasma renin activity to predict the long-term effect of captopril: identification of triphasic pattern of blood pressure response, J. Cardiovasc. Pharmacol, 2, 339–346, 1980.PubMedCrossRefGoogle Scholar
  119. 119.
    Waeber, B., Gavras, I., Brunner, H. R., Cook, C. A., Charocopos, F, Gavras, H., Prediction of sustained antihypertensive efficacy of chronic captopril therapy: relationships to immediate blood pressure response and control plasma renin activity, Am. Heart J., 103, 384–390, 1982.PubMedCrossRefGoogle Scholar
  120. 120.
    Unger, T., Gohlke, P., Tissue renin-angiotensin systems in the heart and vasculature: possible involvement in the cardiovascular actions of converting enzyme inhibitors, Am. J. Cardiology, 65(19), 31–101, 1990.CrossRefGoogle Scholar
  121. 121.
    Johnston, C. I., Mendelsohn, F. A. O., Cubela R. B., Jackson, B., Kihzuki, M., Fabris, B., Inhibition of angiotensin converting enzyme (ACE) in plasma and tissues: studies ex vivo after administration of ACE inhibitors, Journal of Hypertension, 6 (Suppl 3) 517–522, 1988.Google Scholar
  122. 122.
    Jackson, B., Cubela, R., Johnston, C. I., Tissue angiotensin converting enzyme (ACE) during changes in the renin-angiotensin system, J. Cardiovasc. Pharmacol, 10 (Suppl 70), S137–S140, 1987.PubMedCrossRefGoogle Scholar
  123. 123.
    Mendelsohn, F. A. O., Chai, S. Y., Dunbar, M., In vitro autoradiographic localization of angiotensin-converting enzyme in rat brain using 125I-labelled MK 351 A, J. Hypertension, 2 (Suppl 3), 41–44, 1984.Google Scholar
  124. 124.
    Fyhrquist, F., Tikkanen, I., Gronhagen-Riska, C, Hurtling, L., Hichens, M., Inhibitor binding assay for angiotensin converting enzyme, Clin. Chem., 30, 696–700, 1984.PubMedGoogle Scholar
  125. 125.
    Dzau, V. J., Vascular renin-angiotensin: a possible autocrine or paracrine systen in control of vascular function, J. Cardiovasc. Pharmcol, 6 (Suppl 2) S377–S382, 1984.CrossRefGoogle Scholar
  126. 126.
    Mizuno, K., Nakamura, M., Higashimori, K., Higashimori, K., Local generation and release of angiotensin II in peripheral vascular tissue, Hypertension, 11, 223–229, 1988.PubMedCrossRefGoogle Scholar
  127. 127.
    Unger, T., Gohlke, P., Ganten, D., Lang, R. E., Converting enzyme inhibitors and their effects on the renin-angiotensin system of the blood vessel wall, J. Cardiovasac. Pharmacol., 13 (Suppl 3), S8–S16, 1989.CrossRefGoogle Scholar
  128. 128.
    Berecek, K. H., Okuno, T., Nagahama, T., Oparil, S., Altered vascular reactivity and baroreflex sensitivity induced by chronic central administration of captopril in the spontaneously hypertensive rat, Hypertension, 5, 689–700, 1983.PubMedCrossRefGoogle Scholar
  129. 129.
    Gohlke P., Stoll M, Lambertyv, Mattfeld T. et al, Cardiac and vascular effects of chronic angiotensin converting enzyme inhibition at subantihypertensive doses. J. Hypertension 10 (Suppl 6):S–141–S144, 1992.Google Scholar
  130. 130.
    Gohlke P, Lamberty V, Kuwer I, Bartenbach S., et al Vascular remodeling in systemic hypertension. AM J. Cardiol 71:2E–7E, 1993.PubMedCrossRefGoogle Scholar
  131. 131.
    Inagami, T., Ilamura, T., Clemens, D., Celio, M. R., Naruse, K., Naruse, M., Local generation of angiotensin in the kidney and in tissue culture, Clin. Exp. Hypertens. A., 5, 1137–1149, 1983.PubMedCrossRefGoogle Scholar
  132. 132.
    Nakamaru, M. Inagami, T., Ogihara, T., Kumahara, Y, Effect of captopril on angiotensin II release from vascular tissues in rats, Clin. Exp. Hypertens., 9 (2–3), 477–480, 1987.CrossRefGoogle Scholar
  133. 133.
    Mizuno, K., Tani, M., Niimura, S., Hashimoto, S., Satoh, A., Shimamoto, K., Inagami, T., Fukuchi, S., Direct evidence for local generation and release of AII in human vascular tissue, Biochem. Biophys. Res. Commun., 165(1), 457–463, 1989.PubMedCrossRefGoogle Scholar
  134. 134.
    Higashimori, K., Nakamaru, M., Tabuchi, Y., Nagano, M, Mikami, H. Ogihara, T., Inagami, T., Angioten-sin convertine enzyme inhibitors suppress the vascular renin angiotensin system of spontaneously hypertensive rats, Am. J. Hypertension.,: 56S–59S, 1991.Google Scholar
  135. 135.
    Miyazaki, M., Ikunishi, H., Mishimura, K., Toda, N., Vascular angiotensin converting enzyme activity in man and other species, Clin. Sci., 66, 39–45, 1984.PubMedGoogle Scholar
  136. 136.
    Wilson, S. K., Lynch, D. R., Snyder, S. H. Angiotensin converting enzyme labelled with 3H-captopril. Tissue localization and changes in different models of hypertension in the rat, J. Clin. Invest., 80, 841–851, 1987.PubMedCrossRefGoogle Scholar
  137. 137.
    Malik, K. U., Nasjletti, A., Facilitation of adrenergic transmission by locally generated AII in rat mesenteric arteries, Circulation Research, 38, 26–30, 1976.PubMedCrossRefGoogle Scholar
  138. 138.
    Kato, H, Suzuki H, Tajima S, Ogata Y, et al Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hypertension 9: 17–22, 1991.Google Scholar
  139. 139.
    Kuriyama, S., Nakamura, A., Hopp, L. et al., Angiotensin II effect on 22Na+ transport in vascular smooth muscle cells, Journal of Cardiovascular Pharmacology, 11, 136, 1988.Google Scholar
  140. 140.
    Toda, N., Endothelium-dependent relaxation induced by angiotensin II and histamine in isolated arteries of dog, Br. J. Pharmacol., 81, 301–307, 1984.PubMedCrossRefGoogle Scholar
  141. 141.
    Cohen, M.L., Kutz, K.D., Angiotensin converting enzyme inhibition in tissues from spontaneously hypertensive rats after treatment with captopril or MK-421, J. Pharmacol. Exp. Then, 220, 63–69, 1982.Google Scholar
  142. 142.
    Unger, T., Gohlke, P., Tissue renin-angiotensin systems in the heart and vasculature: Possible involvement in the cardiovascular actions of CEI, Am. J. Cardiol., 65 (19), 31–101, 1990.CrossRefGoogle Scholar
  143. 143.
    Berecek, K. H., Shier, D. N., Alterations in renal vascular reactivity induced by chronic central administration of captopril in the spontaneously hypertensive rat, Clin. Exp. Hypertension, A8 (7), 1081–1106, 1986.CrossRefGoogle Scholar
  144. 144.
    Berecek, K. H., Kirk, K. A., Nagahama, S., Oparil, S., Alterations in sympathetic function in spontaneously hypertensive rats after chronic administration of captopril, Am. J. Physiol., 252, H796–H806, 1987.PubMedGoogle Scholar
  145. 145.
    Freslon, J. L., Giudicelli, J. F., Compared myocardial and vascular effects of captopril and dihydralazine during hypertension development in spontaneously hypertensive rats, Br. J. Pharmacol, 80 (3), 533–543, 1983.PubMedCrossRefGoogle Scholar
  146. 146.
    Christensen, K. L., Jespersen, L. T., Mulvany, M. J., Development of blood pressure in spontaneously hypertensive rats after withdrawal of long-term treatment related to vascular structure, J. Hypertens. 7 (2), 83–90, 1989.PubMedCrossRefGoogle Scholar
  147. 147.
    Lee, R. M., Berecek, K. H., Tsoporis, J., McKenzie, R., Triggle, C. R., Prevention of hypertension and vascular changes by captopril treatment, Hypertension, 17 (2), 141–150, 1991.PubMedCrossRefGoogle Scholar
  148. 148.
    Scholkens, B. A., Linz, W., Martorana, P. A., Experimental cardiovascular benefits of angiotensin converting enzyme inhibitors: Beyond blood pressure reduction, Journal of Cardiovascular Pharmacology, 18 (Suppl 2), S26–S30, 1991.PubMedGoogle Scholar
  149. 149.
    Scicli AG, Farhy R., Scicli G. and Nolly W. The kallikrin-kinin system in heart and vascular tissue in The role of bradykinin in the cardiovascular action of the converting enzyme inhibitor ramipril. G Bonner, BA Scholkens, and AG Sciclieds, Media Medica: Frankfurt, pp 17–27, 1992.Google Scholar
  150. 150.
    Linz W, Henning R. Scholkens BA, and Becker RHA. ACE inhibition and angiotensin II receptor antagonism on development and regression of cardiac hypertrophy in rats. In Current advances in ACE. Inhibition 2 Union Physiol Sci/Am Physiol Soc, pp 188-190, 1991.Google Scholar
  151. 151.
    Weber KT, Sun Y and Guarda E. Structural remodeling in hypertensive heart disease and the role of hormones. Hypertension 23[part 2]:869–877, 1994.PubMedCrossRefGoogle Scholar
  152. 152.
    Heagerty, A. M. AII: vasconstrictor or growth factor? Journal of Cardiovascular Pharmacology, 18 Suppl 2:, S14–S9, 1991.PubMedGoogle Scholar
  153. 153.
    Hiroshi K, Hiromichi S, Shingo T, Yasuhide O, Takehiko T, Atsuhisa S, Takao S. Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hypertension, 9:17–22, 1991.Google Scholar
  154. 154.
    Morishita R, Gibbons G.H., Kaneda Y, Ogihara T and Dzau VJ. Novel and effective gene transfer technique for study of vascular renin angiotensin system. J Clin Invest 91:2580–2585,1993.PubMedCrossRefGoogle Scholar
  155. 155.
    Allen, I. S., Cohen, N. M., Dhallian, R. S., Gaa, S. T., Lederer, W. J., Rogers, T. B., AII increases contractile frequency and stimulates calcium current in cultured neonatal rat heart myocytes: insights into the underlying biochemical mechanisms, Circ. Res., 62, 524–534, 1988.PubMedCrossRefGoogle Scholar
  156. 156.
    Griendling, K. K., Berk, B. C., Ganz, P., Gimrone, M. A., Alexander, R. W., Angiotensin II stimulation of vascular smooth muscle phosphoinositide metabolism. State of the art lecture. Hypertension, 9 (Suppl III), III–181–III–185, 1987.Google Scholar
  157. 157.
    Geisterfer, A.A.T., Peach, M.J., Owens, G.K., Angiotensin II induceds hypertrophy, not hyperplasia of cultured rat aortic smooth muscle cells. Circ. Res., 62, 749–756, 1988. 149.PubMedCrossRefGoogle Scholar
  158. 158.
    Berk, B.C., Vekshtein, V., Gordon, H.M., Tsuda, T., Angiotensin II-stimulated protein synthesis in cultured vascularsmooth muscle cells. Hypertension, 13, 305–314, 1989.PubMedCrossRefGoogle Scholar
  159. 159.
    Naftilan, A. J., Pratt, R.E., Eldridge, C.S., Lin, H.L., Dzau, V.J., Angiotensin II induces c-fos expression in smooth muscle via transcriptional control Hypertension, 13, 706–711, 1989.PubMedCrossRefGoogle Scholar
  160. 160.
    Naftilan, A.J., Gilliland, G.K., Eldridge C.S., Kraft, A.S., Induction of the protooncogene c-jun by angiotensin II, Mol. Cell biol., 10 (10), 5536–5540, 1990.PubMedGoogle Scholar
  161. 161.
    Rainer, R.S., Eldridge, C.S., Gilliland, G.K., Naftilan, A.J., Antisense oligonucleotide to c-fos blocks the angiotensin II-induced stimulation of protein synthesis in rat aortic smooth muscle cells, [Abstract], Hypertension, 16, No.3,326 (4),1990.Google Scholar
  162. 162.
    Mulvagh, S.L., Roberts, R., Schneider, M.D., Cellular oncogenes in cardiovascular disease, J. Mol. Cell. Cardiol., 20, 657–662, 1988.PubMedCrossRefGoogle Scholar
  163. 163.
    Rauscher, F. J., III, Sambucetti, L. C, Curran, T., Distel, R. J., Spiegelman, B. M, A common DNA binding site for fos complexes and transcription factor AP-1, Cell, 52, 471–480, 1988.PubMedCrossRefGoogle Scholar
  164. 164.
    Itoh, H., Pratt, R. E., Dzau, V. J., Antisense olignucleotides complementary to PDGF mRNA attenuate angiotensin II-induced vascular hypertrophy, [Abstract], Hypertension, 16, 325,(46), 1990.Google Scholar
  165. 165.
    Lyall, F., Morton, J. J., Lever, A. F., Cragoe, E. J., Angiotensin II activated Na+-H+ exchange and stimulates growth in cultured vascular smooth muscle cells, J. Hypertens., 6 (Suppl 4), S438–S441, 1988.Google Scholar
  166. 166.
    Campbell-Boswell, M., Robertson, L. A., Jr., Effects of angiotensin II and vasopressin on human smooth muscle cells in vitro, Exp. Mol. Pathol., 35, 265–276, 1981.PubMedCrossRefGoogle Scholar
  167. 167.
    Komuro, I., Kurabayashi, M., Takaku, F., Yazaki, Y., Expression of cellular oncogenes in the myocardium during the developmental stage and pressure-overloaded hypertrophy of the rat heart, Circ. Res., 62, 1075–1079, 1988.PubMedCrossRefGoogle Scholar
  168. 168.
    Offerenshaw, J. D., Heagerty, A. M., West, K. P. Swales, J. D., The effects of coarctation hypertension upon vascular inositol phospholipid hydrolysis in Wistar rats, J. Hypertens., 6, 733–738, 1988.CrossRefGoogle Scholar
  169. 170.
    Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, et al Angiotensin II receptors and angiotensin II receptor antagonist. Pharmacol Rev 45:205–251, 1993.PubMedGoogle Scholar
  170. 171.
    Nagano M, Higaki J, Mikani H. Nakamura M. Higashimouri K, et al. Converting enzyme inhibitors regressed cardiac hypertrophy and reduced tissue angiotensin II in spontaneously hypertensive rats, J Hypertension. 9:595–599, 1991.CrossRefGoogle Scholar
  171. 172.
    Morgan HE and Baker KM Cardiac Hypertrophy: Mechanical, neural and endocrine dependence. Circulation 83:13–25, 1991.PubMedCrossRefGoogle Scholar
  172. 173.
    Weber KT and Brilla CG Pathological hypertrophy and cardiac interstiterium: fibrosis and renin-angiotensin-aldosterone system. Circulation 83:1849–1865, 1991.PubMedCrossRefGoogle Scholar
  173. 174.
    Gay, RG Captopril reduces left ventricular enlargement induced by chronic volume overload. Am J Physiol 259:H796–H803, 1990.PubMedGoogle Scholar
  174. 175.
    Thollon C, Kreher P, CHarlon V and Rossi A. Hypertrophy induced alteration of action potential and effects of inhibition of angiotensin converting enzyme by perindopril in infarcted rat hearts. Cardiovasc Res 23:224–230, 1989.PubMedCrossRefGoogle Scholar
  175. 176.
    Litwin SE, Litwin CM, Raya TD, Warner AL and Goldman S. Contractility and stiffness of noninfarcted myocardium after coronary ligation in rats. Circulation 83:1028–1037, 1991.PubMedCrossRefGoogle Scholar
  176. 177.
    Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95, 1985.PubMedCrossRefGoogle Scholar
  177. 178.
    Gavras H Angiotensin converting enzyme inhibition and the heart. Hypertension 23: 813–818, 1994.PubMedCrossRefGoogle Scholar
  178. 179.
    Ganten D., Hermann K., Bayer C., Unger T., Lang R.E., Angiotensin synthesis in the brain and increased turnover in hypertensive rats, Science, 221, 869–871, 1983.PubMedCrossRefGoogle Scholar
  179. 180.
    Ganten D., Fuxe K., Phillips M. I., Mann J. F. E., Ganten, U., The brain isorenin-angiotensin system: Biochemistry, localization and possible role in drinking and blood pressure regulation, in Frontiers in Neuroendocrinology, Vol. 5, Raven Press: New York, 1978, pp 61–79. Ganog WF, Martini (eds)Google Scholar
  180. 181.
    Phillips, M. I., Kimura B., Converting enzyme inhibitors and brain angiotensin, J. Cardiovasc. Pharmacol, 8 (Suppl 10), S82–S90, 1986.PubMedGoogle Scholar
  181. 182.
    Lind R. W., Swanson L. W., Ganten D., Organization of angiotensin II immunoreactive cells and fibers in the rat nervous system, Neuroendocrinol., 40, 2–24, 1985.CrossRefGoogle Scholar
  182. 183.
    Campbell, D. J., Bouhnik, J., Menard, J., Corvol, P., Identity of angiotensinogen precursors of rat brain and liver, Nature, 308, 206–208, 1984.PubMedCrossRefGoogle Scholar
  183. 184.
    Mendelsohn, F. A. O., Quirion, R., Saavedra, J. M., Aguilera, G., Catt, K.J., Autoradiographic localization of angiotensin II receptors in rat brain, Proc. Natl. Acad. Sci., USA, 81, 1575–1579, 1984.PubMedCrossRefGoogle Scholar
  184. 185.
    Fishman, M., Zimmerman, E., Slater E., Renin and angiotensin: The complete system within the neuroblastoma × glial cell, Science, 214, 921–923, 1981.PubMedCrossRefGoogle Scholar
  185. 186.
    Hermann, K., Raizada, M. K., Sumners, C, Phillips, M. I., Immunocytochemical and biochemical characterization of angiotensin I and II in cultured neuronal and glial cells from rat brain, Neuroendocri-nol., 47, 125–130, 1988.CrossRefGoogle Scholar
  186. 187.
    Hermann, K., Phillips, M. I., Hilgenfeldt, U., Raizada, M. K., Biosynthesis of angiotensinogen and angiotensins by brain cells in primary culture, J. Neurochemistry, 51, 398–405, 1988.CrossRefGoogle Scholar
  187. 188.
    Vallotton, M. B., The renin-angiotensin system. Trends in Pharmacol. Sci., 8, 69–74, 1987.CrossRefGoogle Scholar
  188. 189.
    Epstein, A. N., Fitzsimons, J. T., Rolls, B. J., Drinking induced by injection of angiotensin into the brain of the rat,. J. Physiol. (Lond.), 210, 457–474, 1970.Google Scholar
  189. 190.
    Bradford, H. F., Chemical Neurobiology, W. H. Freeman and Co., New York, 1986, 265.Google Scholar
  190. 191.
    Felix, D., Schelling, P., Angiotensin converting enzyme blockade by captopril changes antiotensin II receptors and angiotensinogen concentrations in the brain of SHR-SP and WKY rats, Neurosci. Lett, 34, 45–50, 1982.PubMedCrossRefGoogle Scholar
  191. 192.
    Sladek, C. D., Armstrong, W. E., Effect of neurotransmitters and neuropeptides on vasopressin release, in, Vasopressin: Principles and Properties. Gash, D. M., Boer, G. J., Eds., Plenum Press, New York, 1987, 275–333.CrossRefGoogle Scholar
  192. 193.
    Schomig, A., Dietz, R., Rascher, W., Luth, J. B., et al., Sympathetic vascular tone in spontaneously hypertensive rats, J. Klin. Wochenschr., 56 (Suppl I), 131–138, 1978.CrossRefGoogle Scholar
  193. 194.
    Crofton, J. T, Share, L., Shade, R. E., Allen, C., Tarnowski, D., Vasopressin in the rat with spontaneous hypertension, Am. J. Physiol, 235 (4), H361–H365, 1978.PubMedGoogle Scholar
  194. 195.
    Plunkett, L. M., Saavedra, J. M, Increased angiotensin II binding affinity in the nucleus tractus solitarius of spontaneously hypertensive rats, Proc. Nat. Acad. Sci., 82, 7721–7724, 1985.PubMedCrossRefGoogle Scholar
  195. 196.
    Saavedra, J. M., Correa, F. M. A, Kurihara, M., Shigematsu, K., Increased number of angiotensin II receptors in the subfornical organ of spontaneously hypertensive rats, J. Hypertension, 4 (Suppl 5), S27–S30, 1986.Google Scholar
  196. 197.
    Casto, R., Phillips, M. I., Neuropeptide action in nucleus tractus solitarius: Angiotensin specificity and hypertensive rats, Am. J. Physiol., 249, R341–R347, 1985.PubMedGoogle Scholar
  197. 198.
    Hutchinson, J. S., Mendelsohn, F. A. O., Doyle, A. E., Blood pressure responses of conscious normotensive and spontaneously hypertensive rats to intracerebroventricular and peripheral administration of captopril, Hypertension, 2, 546–550, 1980.PubMedCrossRefGoogle Scholar
  198. 199.
    Unger, T., Kaufmann-Buhler, I., Scholkens, B., Ganten, D., Brain converting enzyme inhibition: a possible mechanism for the antihypertensive action of captopril in spontaneously hypertensive rats, Eur. J. Pharmacol., 70, 467–478, 1981.PubMedCrossRefGoogle Scholar
  199. 200.
    Cohen, M. L., Kurz, K., Angiotensin converting enzyme inhibition in tissue from spontaneously hypertensive rats after treatment with captopril or MK 421, J. Pharmacol. Exp. Ther., 220, 63–69, 1982.PubMedGoogle Scholar
  200. 201.
    Unger, T., Ganten, D., Lang, R. E., Scholkens, B.A., Is tissue converting enzyme inhibition a determinant of the antihypertensive efficacy of converting enzyme inhibitors? Studies with two different compounds Hoe 498 and MK 421 in spontaneously hypertensive rats, J. Cardiovasc. Pharmacol, 6, 872–880, 1984.PubMedCrossRefGoogle Scholar
  201. 202.
    Unger, T., Schull, B., Rascher, W., Lang, R E., Ganten, D., Selective activation of the converting enzyme inhibitor MK 421 and comparison of its active diacid form with captopril in different tissues of the rat, Biochem. Pharmacol., 31: 3063–3070, 1982.PubMedCrossRefGoogle Scholar
  202. 203.
    Suzuki, H., Kondo, K., Hand, M., Saruta, T., Role of the brain isorenin-angiotensin system in experimental hypertension in rats, Clin. Sci., 61, 175–180, 1981.PubMedGoogle Scholar
  203. 204.
    Pochiero, M., Nicoletta, P., Losi, E., Bianchi, A., Caputi, A. P., Cardiovascular responses of conscious DOCA-salt hypertensive rats to acute intracerebro ventricular and intravenous administration of captopril, Pharmacology Research Communications, 15, 173–182, 1983.CrossRefGoogle Scholar
  204. 205.
    Cohen, M. L., Kurz, K., Captopril and MK 421; stability on storage, distribution to the central nervous system, and onset of activity, Fed. Proc, 42, 171–175, 1983.PubMedGoogle Scholar
  205. 206.
    Geppetti, P., Spillantini, M. G., Frilli, S., Petrini, U., Fanciullaci, M., Sicuteri, F., Acute oral captopril inhibits angiotensin converting enzyme activity in human cerebrospinal fluid, J. Hypertens., 5, 151–154, 1987.PubMedCrossRefGoogle Scholar
  206. 207.
    Nishimura, K., Alhenc-Gelas, F., White, A., Erdos, E. G., Activation of membrane-bound kallikrein and renin in the kidney, Proc. Natl Acad. Sci., USA, 77, 4975–4978, 1980.PubMedCrossRefGoogle Scholar
  207. 208.
    Swartz, S. L., Williams, G. H., Hollenberg, N. K., Levine, L., Dluhy, R. G., Moore, T. J., Captopril-induced changes in prostaglandin production. Relationship to vascular responses in normal man, J. Clin. Invest., 65, 1257–1264, 1980.PubMedCrossRefGoogle Scholar
  208. 209.
    Crantz, F. R., Swartz, S. L., Hollenberg, N. K., Moore, T. J., Dluhy, R. G., Williams, G. H., Differences in response to the peptidyldipeptidase hydrolase inhibitors SQ 20,881 and SQ 14,225 in normal-renin essential hypertension, Hypertension, 2, 604–609, 1980.PubMedCrossRefGoogle Scholar
  209. 210.
    Ogihara, T., Maruyama, A., Hata, T., Mikami, H., Nakamura, M., Naka, T., Ohde, H., Kumahara, Y, Hormonal responses to long-term converting enzyme inhibition in hypertensive patients, Clin. Pharmacol. Ther., 30, 328–335, 1981.PubMedCrossRefGoogle Scholar
  210. 211.
    Johnston, C. I., Clappison, B. H., Anderson, W. P., Yasujima, M., Effect of angiotensin-converting enzyme inhibition on circulating and local kinin levels, Am. J. Cardiol, 49, 1401–1404, 1982.PubMedCrossRefGoogle Scholar
  211. 212.
    Sancho, J., Re, R.N., Burton, J., Barger, C. A., Haber, E., Role of the renin angiotensin system in cardiovascular homeostasis in normal human subjects, Circulation, 53, 400–405, 1976.PubMedCrossRefGoogle Scholar
  212. 213.
    Carretero, O. A., Miyazaki, S., Scicli, A. G., Role of kinin in the acute antihypertensive effect of the converting enzyme inhibitor, captopril, Hypertension, 3, 18–22, 1981.PubMedCrossRefGoogle Scholar
  213. 214.
    Beneto, A., Gavras, H., Stewart, J. M., Vavrek, R. J., Hatinoglou, S., Gavras, I., Vasodepressor role of endogenous bradykinin assessed by a bradykinin antagonist, Hypertension, 8, 971–974, 1986.CrossRefGoogle Scholar
  214. 215.
    Scholkens, B. A., Linz, W., ACE inhibition: in Mechanisms of “cardioprotection” in acute myocardial ischemia, Klin-Wochenschr, 69 (Suppl 24):,1–5, 1991.PubMedGoogle Scholar
  215. 216.
    Dietze, G. J., Rett, K., Jauch, K. W., Wicklmayr, M., Fink, E., Har Guenther, B., Fritz, H., Mehnert, H., Captopril in hypertensive patients with type II diabetes mellitus. Herz, 12 (I), 16–21, 1987.PubMedGoogle Scholar
  216. 217.
    Ramwell R W., Leovey, E. M., Sintetos, A. L., Regulation of the arachidonic cascade, Biol. Reprod., 16, 70–87, 1977.PubMedCrossRefGoogle Scholar
  217. 218.
    Lonigro, A. J., Itskovitz, H. D., Crowshaw, K., McGiff, J. C, Dependency of renal blood flow on prostaglandin synthesis in the dog, Circ. Res., 32, 712–717, 1973.PubMedCrossRefGoogle Scholar
  218. 219.
    Moore, T. J., Crantz, F. R., Hollenberg, N. K., Koletsky, R. J., Leboff, M. S., Swartz, S. L., Levine, L., Podolsky, S., Dluhy, R. G., Williams, G. H., Contribution of prostaglandins to the antihypertensive action of captopril in essential hypertension, Hypertension, 3, 168–173, 1981.PubMedCrossRefGoogle Scholar
  219. 220.
    McGiff, J. C, Terragno, N. A., Malik, K. U., Lonigro, A. J., Release of prostaglandin E-like substance from canine kidney by bradykinin, Circ. Res., 31, 36–43, 1972.PubMedCrossRefGoogle Scholar
  220. 221.
    Needelman, P., Wyche, A., Bronson, S.D., Holmberg, M., Morrison, A.R., Specific regulation of peptide-induced renal prostaglandin biosynthesis, J. Biol. Chem., 254, 9772–9777, 1979.Google Scholar
  221. 222.
    Swartz, S. L., The role of prostaglandins in mediating the effects of angiotensin converting enzyme inhibitors and other antihypertensive drugs, Cardiovasc. Drugs Ther, 1(1), 39–43, 1987.PubMedCrossRefGoogle Scholar
  222. 223.
    Brunner, H. R., Gavras, H., Waeber, B., Kershaw, G. R., Turini, G. A., Vukovich, R. A., McKinstry, D. N., Gavras, I., Oral angiotensin-converting enzyme inhibitor in long term treatment of hypertensive patients, Ann. Intern. Med., 90, 19, 1979.PubMedCrossRefGoogle Scholar
  223. 224.
    Case, D. B., Atlas, S. A., Laragh, J. H., Sullivan, P. A., Sealey, J. E., Use of first dose response or plasma renin activity to predict the long-term effect of captopril: identification of triphasic pattern of blood pressure response, J. Cardiovasc. Pharmacol., 2, 339–346, 1980.PubMedCrossRefGoogle Scholar
  224. 225.
    Atlas, S. A., Case, D. B., Sealey, J. E., Laragh, J. H., McKinstry, D. N., Interruption of the renin-angiotensin system in hypertensive patients by captopril induces sustained reduction in aldosterone secretion, potassium retention and natriuresis, Hypertension, 1, 274–280, 1979.PubMedCrossRefGoogle Scholar
  225. 226.
    De Zeeuw, D., Navis, G. J., Donker, A. J. M., De Jong, P. E., The angiotensin converting enzyme inhibitor enalapril and its effects on renal function, J. Hypertens., 1(1), 93–97, 1983.Google Scholar
  226. 227.
    Brunner, H. R., Waeber, B., Nussberger, J., Schaller, M. D., Gomez, J. H., Long-term clinical experience with enalapril in essential hypertension, J Hypertens., 1 (1), 103–107, 1983.CrossRefGoogle Scholar
  227. 228.
    Sanchez, R. A., Marco, E., Gilbert, H. B., Raffaele, G. P., Brito, M., Gimenez, M., Moledo, L. I., Natriuretic effect and changes in renal hemodynamics induced by enalapril in essential hypertension, Drugs, 30 (1), 49–58, 1985.PubMedCrossRefGoogle Scholar
  228. 229.
    Brilla CG, Matsubara LS, Weber KT Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyper-aldosteronism. J Mol Cell Cardiol 25: 563–575, 1993.PubMedCrossRefGoogle Scholar
  229. 230.
    Thibonnier, M., Aldigier, J. C., Soto, M. E., Sassano, P., Menard, J., Corvol, P., Abnormalities and drug-induced alterations of vasopressin in human hypertension, Clin. Sci., 61 (Suppl 7) 149S–152S, 1981.PubMedGoogle Scholar
  230. 231.
    Santucci, A., Luparini, R. L., Ferri, C, Ficara, C, Giarrizzo, C, Balsano, F., Relationship between vasopressin and the renin-angiotensin aldosterone system in essential hypertension: effect of converting enzyme inhibitor on plasma vasopressin, J. Hypertension., 3 (2), S133–S134, 1985.Google Scholar
  231. 232.
    Berecek, K. H., Wyss, J. M., Swords, B. H., Alterations in vasopressin mechanisms in captopril treated spontaneously hypertensive rats, Clin. & Exp. Hypertension., A 13(5), 1019–1031, 1991.CrossRefGoogle Scholar
  232. 233.
    Amann, F. W., Bolli, P., Kiowski, W., Buhler, F. R., Enhanced α-adrenoceptor mediated vasoconstriction in essential hypertension. Hypertension, 3 (I), 119–123, 1981.Google Scholar
  233. 234.
    Goldstein, D. S., Plasma catecholamines and essential hypertension. An Analytical review. Hypertension, 5, 86–99, 1983.PubMedCrossRefGoogle Scholar
  234. 235.
    Dietz, R., Schomig, A., Haebara, H., Mann, J. F., Rascher, W., Luth, J. B., Grunherz, N., and Gross, F. Studies on the pathogenesis of spontaneous hypertension of rats. Circ. Res., 43 (Suppl I):I–98–I–106, 1978.Google Scholar
  235. 236.
    Judy, W. V., Wantanabe, A. M., Henry, D. P., Besch, H. R., Jr., Murphy, W. R., Hockel, H. Sympathetic nerve activity: Role in regulation of blood pressure in the spontaneously hypertensive rat. Circ. Res., 38 (Suppl II), II21–II29, 1976.Google Scholar
  236. 237.
    Bickerton, R. K., Buckley, J. P., Evidence for a central mechanism in angiotensin induced hypertension, Proc. Soc. Exp. Biol. Med., 106, 834–836, 1961.CrossRefGoogle Scholar
  237. 238.
    Simpson, J. B., The circumventricular organs and the central action of angiotensin, Neuroendocrinol, 32, 248–256, 1981.CrossRefGoogle Scholar
  238. 239.
    Khairallah, D. A., Action of angiotensin in adrenergic nerve endings: inhibition of norepinephrine uptake, Fed. Proc, 31, 1351–1357, 1972.PubMedGoogle Scholar
  239. 240.
    Zimmerman, B. G., Actions of angiotensin on adrenergic nerve endings, Fed. Proc., 37, 199–202, 1978.PubMedGoogle Scholar
  240. 241.
    Zimmerman, B. G., Blockade of adrenergic potentiating effects of angiotensin by l-sar,8-ala angiotensin, J. Pharmacol. Exp. Ther., 185, 486–492, 1973.PubMedGoogle Scholar
  241. 242.
    Feldberg, W., Lewis, G. P., The action of peptides on the adrenal medulla. Release of adrenaline by bradykinin and angiotensin, J Physiol., 171, 98–108, 1964.PubMedGoogle Scholar
  242. 243.
    Antonaccio, M. J., Kerwin, L., Pre-and post-junctional inhibition of vascular sympathetic function by captopril in spontaneously hypertensive rats, Hypertension, 3 (I), I–54–I–62, 1981.Google Scholar
  243. 244.
    Hatton, R., Clough, D. P., Captopril interferes with neurogenic vasoconstriction in the pithed rat by angiotensin-dependent mechanisms, J. Cardiovasc. Pharmacol., 4, 116–123, 1982.PubMedCrossRefGoogle Scholar
  244. 245.
    Mancia G., Parati, G., Pomidossi, G., et al, Modification of arterial baroreflexes by captopril in essential hypertension. Am. J. Cardiol., 6 (10), 791, 1988.Google Scholar
  245. 246.
    Cheng, S. W. T., Swords, B. H., Kirk, K. A., Berecek, K. H., Effects of lifetime captopril treatment on baroreceptor function in the spontaneously hypertensive rat, Hypertension, 13, 63–69, 1989.PubMedCrossRefGoogle Scholar
  246. 247.
    Cheng, S. W. T., Kirk, K. A., Robertson, J., Berecek, K. H., Brain angiotensin II and baroreflex function in spontaneously hypertensive rats, Hypertension, 14, 274–281, 1989.PubMedCrossRefGoogle Scholar
  247. 248.
    Casto, R., Phillips, I., Angiotensin attenuates baroreflexes at nucleus solitarius of rats, Am. J. Physiol., R193–R198, 1986.Google Scholar
  248. 249.
    Thomas, W. G., Sernia, C., Regulation of rat brain angiotensin II (AII) receptors by intravenous AII and low dietary Na+, Brain Res., 345, 54–61, 1985.PubMedCrossRefGoogle Scholar
  249. 250.
    Bradshaw, B., Moore, T. J., Abnormal regulation of adrenal angiotensin II receptors in spontaneously hypertensive rats, Hypertension, 11, 49–54, 1988.PubMedCrossRefGoogle Scholar
  250. 251.
    Messenger, E. A., Stonier, C, Aber, G. M., Differences in glomeruli binding and response to angiotensin II between normotensive and spontaneously hypertensive rats, Clin. Sci., 75, 191–196, 1988.PubMedGoogle Scholar
  251. 252.
    Matsushima, Y., Kawamura, M., Akabane, S., Imanishi, M., Kuramochi, M., Ito, K., Omae, T., Increases in renal angiotensin II content and tubular AII receptors in prehypertensive spontaneously hypertensive rats. Hypertension, 6(10), 791–796, 1988.Google Scholar
  252. 253.
    Grammas, P., Diglio, C., Giacommeli, F., Weiner, J., Cerebrovascular angiotensin II receptors in spontaneously hypertensive rats, J. Cardiovasc. Pharmacol., 13, 227–232, 1989.PubMedCrossRefGoogle Scholar
  253. 254.
    Berecek, K.H., Swords, B.H., Lo, S., Kirk, K.A., Effect of angiotensin converting enzyme inhibitors on brain angiotensin II binding J. Hypertension. 10: 545–552, 1992.CrossRefGoogle Scholar
  254. 255.
    Wu J-N, Edwards D and Berecek KH. Changes in renal angiotensin II receptors in spontaneously hypertensive rats by early treatment with the angiotensin-converting enzyme inhibitor captopril. Hypertension, 23[part 2]:819–822, 1994.PubMedCrossRefGoogle Scholar
  255. 256.
    Nazarali AJ, Gutkind JS, Correa FMA Savadra JM. Enalapril decreases angiotensin II receptors in subfornical organ of SHR. Am J Physiol 256:H1609–H1614, 1989.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kathleen H. Berecek
    • 1
  • Lin Zhang
    • 1
  1. 1.Department of Physiology and Biophysics and The Vascular Biology and Hypertension ProgramUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations