Current Aspects of Autocrine and Paracrine Regulation of Spermatogenesis

  • Bernard Jégou
  • Charles Pineau
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 377)


The testis is composed of the convoluted seminiferous tubules embedded in a connective tissue matrix, named interstitium. The seminiferous tubule comprises the germ cells in various developmental phases, the nonproliferating Sertoli cells and the peritubular cells, which surround the Sertoli cells and germ cells. Germ cells that are continuously renewed and Sertoli cells that cease to divide during pubertal development, form the seminiferous epithelium. The primary function of the seminiferous tubules is the production of spermatozoa. The interstitium contains interspersed blood and lymphatic vessels, nerves, fibrobastic cells, macrophages, lymphocytes, more rarely mast cells and the Leydig cells. The primary function of the Leydig cells is to produce testosterone (see Huhtaniemi and Toppari, this book). This hormone is essential for the differentiation of the embryonic male reproductive organs, the sexualization of the hypothalamus and brain, in formation of the accessory sex organs. It is also crucial for the regulation of sexual behavior and accessory sex organs and of spermatogenesis. On Figure 1, a schematic representation of the testicular organization is presented.


Germ Cell Sertoli Cell Leydig Cell Seminiferous Tubule Seminiferous Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki A, Fawcett DW. Is there a local feedback from the seminiferous tubules affecting activity of the Leydig cell? Biol Reprod 1978; 19: 144–158.PubMedCrossRefGoogle Scholar
  2. Bartlett JMS, Sharpe RM. Effect of local heating of the testis on the levels in intertitial fluid of a putative paracrine regulator of the Leydig cells and its relationship to changes in Sertoli cell secretory function. J Reprod Fertil 1987; 80: 279–287.PubMedCrossRefGoogle Scholar
  3. Bergh A. Damber JE. Vascular controls in testicular physiology. In: de Kretser DM, ed. The molecular biology of male reproductive system. Academic Press, New York, NY, 1993: 439–462).Google Scholar
  4. Boitani C, Ritzén EM, Parvinen M. Inhibition of rat Sertoli cell aromatase by a factor(s) secreted specifically at spermatogenic stages VII and VIII. Mol Cell Endocr 1981; 23: 11–22.CrossRefGoogle Scholar
  5. Bresler RS, Ross MH. Differentiation of peritubular myoid cells of the testis: Effects of intratesticular implantation of newborn-mouse testis into normal and hypophysectomized adults. Biol Reprod 1972; 6: 148–159.Google Scholar
  6. Byers SW, Jégou B, MacCalman C, Blaschuk O. Sertoli cell adhesion molecules and the collective organization of the testis. In: Russell LD, Griswold MD, eds. The Sertoli cell. Cache River Press, Clearwater, FL, 1993: 461–476).Google Scholar
  7. Cameron DF, Snydle E. Selected enzyme histochemistry of Sertoli cells. 2. Adult rat Sertoli cells in co-culture with peritubular fibroblasts. Andrologia 1985; 17: 185–193.Google Scholar
  8. Chowdurhy AK, Marshall G. Irregular pattern of spermatogenesis in the baboon (Papio anubis) and its possible mechanism. In: Steinberger A, Steinberger E, eds. Testicular development, structure and function. Raven Press, New York, NY, 1980: 129–137).Google Scholar
  9. Clermont Y. The cycle of the seminiferous epithelium in man. Am J Anat 1963; 112: 35–51.PubMedCrossRefGoogle Scholar
  10. Cooke PS, Hess RA, Porcelli J, Meisami E. Increased sperm production in adult rats after transient neonatal hypothyroidism. Endocrinology 1991; 129: 244–248.PubMedCrossRefGoogle Scholar
  11. Courot M, Hochereau-de Reviers MT, Ortavant R. Spermatogenesis. In: Johnson AD, Gomes WR, Vandemark NL, eds. The testis. Academic Press, New York, NY, 1970: 339–432).Google Scholar
  12. de Kretser DM, Kerr JB. The cytology of the testis. In: Knobil E, Neill J, eds. The Physiology of reproduction. Raven Press, New York, NY, 1988: 837–932).Google Scholar
  13. Dym M, Clermont Y. Role of spermatogonia in the repair of the seminiferous epithelium following X-irradiation of the rat testis. Am J anat 1970; 128: 265–282.PubMedCrossRefGoogle Scholar
  14. Dym M, Fawcett DW. Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol Reprod 1971; 4: 195–215.PubMedGoogle Scholar
  15. Fawcett DW, Neaves WB, Flores MN. Comparative observations on intertubular lymphatics and the organization of the intertitial tissue of the mammalian testis. Biol Reprod 1973; 9: 500–532.PubMedGoogle Scholar
  16. Fawcett DW. Observations on the organization of the interstitial tissue of the testis and on the occluding cell junctions in the seminiferous epithelium. Adv Biosci 1973; 10: 83–99.PubMedGoogle Scholar
  17. Fawcett DW. Ultrastructure and function of the Sertoli cell. In: Hamilton DW, Greep RO, eds. Handbook of Physiology, Endocrinology section 7, Vol. V, Williams & Wilkins, Baltimore, MD, 1975: 21–55).Google Scholar
  18. Fujisawa M, Bardin CW, Morris PL. A germ cell factor(s) modulates preproenkephalin gene expression in rat Sertoli cells. Mol Cell Endocrinol 1992; 84: 79–88.PubMedCrossRefGoogle Scholar
  19. Gérard N, Syed V, Jégou B. Lipopolysaccharide, latex beads and residual bodies are potent activators of Sertoli cell interleukin-lα production. Biochem Biophys Res Commun 1992; 185: 154–161.PubMedCrossRefGoogle Scholar
  20. Gérard N, Corlu A, Kercret H, Kneip B, Rissel M, Guguen-Guillouzo C, Jégou B. Involvement of liver-regulating protein-like molecule in Sertoli-germ cell crosstalk. In: Bartke A, ed. Function of somatic cells in the testis. Serono symposia publications, Springer Verlag, New York, NY, 1994: 272–277).CrossRefGoogle Scholar
  21. Griswold MD. Cyclic functions of Sertoli cells in synchronized testes. In: Isidori A, Fabbri A, Dufau ML, eds. Hormonal communicating events in the testis. Serono Symposia Publications, Vol. 70, Raven Press, New York, NY, 1990: 171–180).Google Scholar
  22. Hadley MA, Byers SW, Suarez-Quian CA, Kleinman HK, Dym M. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation and germ cell development in vitro. J Cell Biol 1985; 101: 1511–1522.PubMedCrossRefGoogle Scholar
  23. Hakovirta H, Syed V, Jégou B, Parvinen M. Interleukin-6 as an inhibitor of meiotic DNA synthesis in the rat seminiferous epithelium. In: Proceedings of the 8th European workshop on molecular and cellular endocrinology of the testis. De Panne, Belgium, 1994: 96 [Abstract].Google Scholar
  24. Hedger MP, Leung A, Robertson DM, de Kretser DM, Risbridger GP. Steroidogenesis-stimulating activity in the gonads: Comparison of rat testicular fluid with bovine and human ovarian follicular fluids. Biol Reprod 1991; 44: 937–944.PubMedCrossRefGoogle Scholar
  25. Hettle JA, Balekjian E, Tung PS, Fritz IB. Rat testicular peritubular cells in culture secrete an inhibitor of plasminogen activator activity. Biol Reprod 1988; 38: 359–371.PubMedCrossRefGoogle Scholar
  26. Hochereau MT. Etude comparée de la vague spermatogénétique chez le taureau et chez le rat. Ann Biol Anim Bioch Biophys 1963; 3: 5–20.CrossRefGoogle Scholar
  27. Huckins C. Duration of spermatogenesis in pre-and postpubertal Wistar rat. Anat Rec 1965; 151: 364 [Abstract].Google Scholar
  28. Hutson JC, Stocco DM. Peritubular cell influence on the efficiency of androgen-binding protein secretion by Sertoli cells in culture. Endocrinology 1981; 108: 1362–1368.PubMedCrossRefGoogle Scholar
  29. Jansz GF, Cooke RA, Pomerantz DK. Initial characterization of factors from testicular fluid which alter in vitro androgen secretion by normal rat Leydig cells. J Androl 1990; 11: 131–139.PubMedGoogle Scholar
  30. Jégou B. The Sertoli-germ cell communication network in mammals. Int Rev Cytol 1993; 147: 25–96.PubMedCrossRefGoogle Scholar
  31. Jégou B, Syed V, Sourdaine P, Byers SW, Gérard N, Velez de la Calle JF, Pineau C, Gamier DH, Bauché F. The dialogue between late spermatids and Sertoli cells in vertebrates: A century of research. In: Nieschlag E, Habenicht UF, eds. Spermatogenesis, fertilization, contraception: molecular, cellular and endocrine events in male reproduction. Springer Verlag, Berlin 1992: 56–95.Google Scholar
  32. Jégou B. The Sertoli cell. In: de Kretser DM, ed. The Testis. Baillière’s Clinical Endocrinology and Metabolism. Vol 6. Baillière’s Tindall, London, 1992: 273–311).Google Scholar
  33. Jégou B, Le Magueresse B, Sourdaine P, Pineau C, Velez de la Calle JF, Garnier DH, Guillou F, Boisseau C. Germ cell-Sertoli cell interactions in vertebrates. In: Cooke BA, Sharpe RM, eds. Molecular and cellular endocrinology of the testis. Serono Symposia Publications, vol. 50, Raven Press, New York, NY, 1988: 255–270).Google Scholar
  34. Jégou B. Spermatids are regulators of Sertoli cell function. Ann NY Acad Sci 1991; 637: 340–353.PubMedCrossRefGoogle Scholar
  35. Jégou B, Sharpe RM. Paracrine mechanisms in testicular control. In: de Kretser DM, ed. The molecular biology of the male reproductive system. Academic Press, New York, NY, 1993: 271–310).Google Scholar
  36. Kaiser D, Losick R. How and why bacteria talk to each other. Cell 1994; 73: 873–885.CrossRefGoogle Scholar
  37. Kirkby JD, Jetton AE, Cooke PS, Hess RA, Bunick D, Ackland JF, Turek FW, Schwartz NB. Developmental hormonal profiles accompanying the neonatal hypothyroidism-induced increase in adult testicular size and sperm production in the rat. Endocrinology 1992; 131: 559–565.CrossRefGoogle Scholar
  38. Leblond CP, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann NY Acad Sci 1952; 55: 548–573.PubMedCrossRefGoogle Scholar
  39. Leidl W. Z Tierz Zuechtungsbiol 1968; 84: 273–289.CrossRefGoogle Scholar
  40. Le Magueresse B, Jégou B. Possible involvement of germ cells in the regulation of oestradiol-17β and ABP secretion by immature rat Sertoli cell (in vitro studies). Biochem Biophys Res Commun 1986; 41: 861–869.CrossRefGoogle Scholar
  41. Loir M, Le Gac F. Insulin like growth factors 1 and 2 binding and action on DNA synthesis in rainbow trout spermatogonia and spermatocytes. Biol Reprod 1994; 51: 1154–1163.PubMedCrossRefGoogle Scholar
  42. Onoda M, Djakiew D. Partial purification of the paracrine factor from round spermatids which stimulates Sertoli cell transferrin secretion. In: Proceedings of the 7th European workshop on molecular and cellular endocrinology of the testis. Castle Elmau, Germany, 1992: 53 [Abstract].Google Scholar
  43. Onoda M, Djakiew D, Papadopoulos V. Pachytene spermatocytes regulate the secretion of Sertoli cell protein(s) which stimulate Leydig cell steroidogenesis. Mol Cell Endocrinol 1991; 77: 207–216.PubMedCrossRefGoogle Scholar
  44. Paranko J, Pelliniemi LJ, Vaheri A, Foidart JM, Lakkala-Paranko T. Morphogenesis and fibronectin in sexual differentiation of rat embryonic gonads. Differentiation (suppl.)1983; 23: 72–81.Google Scholar
  45. Parvinen M, Vihko KK, Toppari J. Cell interactions during the seminiferous epithelial cycle. Int Rev Cytol 1986; 104: 115–151.PubMedCrossRefGoogle Scholar
  46. Parvinen M. Cyclic function of Sertoli cell. In: Russell LD, Griswold MD, eds. The Sertoli cell. Cache River Press, Clearwater, FL, 1993: 332–347).Google Scholar
  47. Parvinen M, Söder O, Mali P, Fröysa B, Ritzén EM. In vitro stimulation of stage-specific deoxyribonucleic acid synthesis in rat seminiferous tubule segments by interleukin-1. Endocrinology 1991; 129: 1614–1620.PubMedCrossRefGoogle Scholar
  48. Perey B, Clermont Y, Leblond CP. The wave of the seminiferous epithelium in the rat. Am J Anat 1961; 108: 47–77.CrossRefGoogle Scholar
  49. Pineau C, Syed V, Bardin CW, Jégou B, Cheng CY. Germ cell-conditioned medium contains multiple factors that modulate the secretion of testins, clusterin, and transferrin by Sertoli cells. J Androl 1993; 14: 87–98.PubMedGoogle Scholar
  50. Pinon-Lataillade G, Velez de la Calle JF, Viguier-Martinez MC, Garnier DH, Folliot R, Maas J, Jégou B. Influence of germ cells upon Sertoli cells during continuous low-dose rate γ-irradiation of adult rats. Mol Cell Endocrinol 1988; 58: 51–63.PubMedCrossRefGoogle Scholar
  51. Pinon-Lataillade G. Effets de différents types d’irradiation sur l’activité testiculaire chez le rat. Thèse d’Etat Univ. P. M. Curie (Paris) 1986: 1-108.Google Scholar
  52. Pomerantz DK. Effects of in vivo gonadotropin treatment on estrogen levels in the testes of immature rat. Biol Reprod 1979; 21: 1247–1255.PubMedCrossRefGoogle Scholar
  53. Rich KA, Kerr JB, de Kretser DM. Evidence for Leydig cell dysfunction in rats with seminiferous tubule damage. Mol Cell Endocrinol 1979; 13: 123–135.PubMedCrossRefGoogle Scholar
  54. Risbridger GP, Kerr JB, de Kretser DM. Evaluation of Leydig cell function and gonadotropin binding in unilateral and bilateral cryptorchidism: evidence for local control of Leydig cell function by the seminiferous tubules. Biol Reprod 1981; 24: 534–540.PubMedCrossRefGoogle Scholar
  55. Risbridger GP, Jenkin G, de Kretser DM. The interaction of hCG, hydroxysteroids and interstitial fluid on rat Leydig cell steroidogenesis in vitro. J Reprod Fertil 1986; 77: 239–245.PubMedCrossRefGoogle Scholar
  56. Rodriguez-Rigau LJ, Zukerman Z, Weiss DB, Smith KD, Steinberger E. Hormone control of spermatogenesis in man: comparison with the rat. In: Steinberger A, Steinberger E, eds. Testicular development, structure and function. Raven Press, New York, NY, 1980: 139–146).Google Scholar
  57. Roosen-Runge EC, Giesel LO. Quantitative studies on spermatogenesis in the albino rat. Amer J Anat 1950; 87: 1–30.PubMedCrossRefGoogle Scholar
  58. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Histological and histopathological evaluation of the testis. Cache River Press, Clearwater, FL 1990: 1–286.Google Scholar
  59. Sanborn BM, Ku CY, Lu Q. Androgen action in Sertoli and peritubular cells. In: Function of somatic cells in the testis. Bartke A, ed. Springer Verlag, New York, NY, 1994: 253–264).CrossRefGoogle Scholar
  60. Schulze W, Salzbrunn A. Spatial and quantitative aspects of spermatogenic tissue in primates. In: Nieschlag E, Habenicht UF, eds. Spermatogenesis, fertilization, contraception. Springer verlag, Berlin, 1992: 267–283).CrossRefGoogle Scholar
  61. Schulze W, Rehder U. Organization and morphogenesis of the human seminiferous epithelium. Cell Tissue Res 1984; 237: 395–407.PubMedCrossRefGoogle Scholar
  62. Sharpe RM, Maddocks S, Kerr JB. Cell-cell interactions in the control of spermatogenesis as studied using Leydig cell destruction and testosterone replacement. Am J Anat 1990; 188: 3–20.PubMedCrossRefGoogle Scholar
  63. Sharpe RM. Experimental evidence for Sertoli-germ cell and Sertoli-Leydig cell interactions. In: Russell LD, Griswold MD, eds. The Sertoli cell. Cache River Press, Clearwater, FL, 1993: 391–418).Google Scholar
  64. Sharpe RM. Regulation of spermatogenesis. In: Knobil E, Neill JD, eds. The physiology of reproduction, 2 edition, Raven press, New York, NY, 1994: 1363–1434.Google Scholar
  65. Skinner MK. Cell-cell interactions in the testis. Endocr Rev 1991; 12: 45–77.PubMedCrossRefGoogle Scholar
  66. Syed V, Stephan JP, Gérard N, Legrand A, Parvinen M, Bardin CW, Jégou B. Residual bodies activate Sertoli cell IL-la release which triggers IL-6 production by an autocrine mechanism, through the lipoxygenase pathway. Endocrinology 1995; in Press.Google Scholar
  67. Syed V, Gérard N, Kaipia A, Bardin CW, Parvinen M, Jégou B. Identification, ontogeny and regulation of an interleukin-6-like (IL-6) factor in the rat testis. Endocrinology 1993; 132: 293–299.PubMedCrossRefGoogle Scholar
  68. Tung PS, Fritz IB. Interactions of Sertoli cells with myoid cells in vitro. Biol Reprod 1980; 23: 207–217.PubMedCrossRefGoogle Scholar
  69. Tung PS, Fritz IB. Extracellular matrix components and testicular peritubular cells influence the rate and pattern of Sertoli cell migration in vitro. Dev Biol 1986a; 113: 119–134.PubMedCrossRefGoogle Scholar
  70. Tung PS, Fritz IB. Cell-substratum and cell-cell interactions promote testicular peritubular myoid cell histotypic expression in vitro. Dev Biol 1986b; 115: 155–170.PubMedCrossRefGoogle Scholar
  71. Verhoeven G. Local control systems within the testis. In: de Kretser DM, ed. The Testis. Baillière’s Clinical Endocrinology and Metabolism. Vol 6. Baillière’s Tindall, London, 1992: 313–333).Google Scholar
  72. Welsh MJ, Ireland ME. The second messenger pathway for germ cell-mediated stimulation of Sertoli cells. Biochem Biophys Res Commun 1992; 184: 217–227.PubMedCrossRefGoogle Scholar
  73. Zong SD, Bardin CW, Phillips D, Cheng CY. Testins are localized to the junctional complexes of rat Sertoli and epididymal cells. Biol Reprod 1992; 47: 568–572.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Bernard Jégou
    • 1
  • Charles Pineau
    • 1
  1. 1.G.E.R.M., INSERM U.435Université de Rennes IRennes Cedex, BretagneFrance

Personalised recommendations