The Choriodecidual Renin Controversy Revisited

  • Myriam Hanssens
  • Lisbeth Vercruysse
  • Lieve Verbist
  • Robert Pijnenborg
  • Marc J. N. C. Keirse
  • F. André Van Assche
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 377)

Abstract

Identification of the cell type that contains renin within the uteroplacental unit is important to further research in the physiological function of the renin-angiotensin system at this site. Using an anti-human renal renin monoclonal antibody F37.1A1/Sera-Lab, we found immunopositive staining in cells dispersed throughout the decidual layer of the fetal membranes (Hanssens et al 1994). A small number of immunopositive cells was seen in the chorion laeve while immunopositive cells were found only rarely in the chorionic and in the amnionic mesoderms. These cells have many characteristics of macrophages. They are small, variable in size and shape, and some are loaden with haemosiderin.

Keywords

Double Staining Fetal Membrane Normal Human Serum Normal Mouse Serum Normal Full Term Pregnan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker GM, Galen FX, Devaux C, Foote S, Papernik E, Pesty A, Menard J, Corvol P, Human chorionic cells in primary culture: A model for renin biosynthesis. J Clin Endocrinol Metab 1982; 55: 902–909.PubMedCrossRefGoogle Scholar
  2. Bulmer JN, Johnson PM, Macrophage populations in the human placenta and amniochorion. Clin Exp Immunol 1984; 57: 393–403.PubMedGoogle Scholar
  3. Bulmer JN, Johnson PM, Antigen expression by trophoblast populations in the human placenta and their possible immunological relevance. Placenta 1985; 6: 127–140.PubMedCrossRefGoogle Scholar
  4. Clark RA, Stone RD, Leung DYK, Silver I, Hohn DC, Hunt TK, Role of macrophages in wound healing. Surg Forum 1976; 27: 16–18.PubMedGoogle Scholar
  5. Clozel JP, Hess P, Schietinger K, Breu V, Fischli W, Baumgartner HR, Major role of the renin angiotensin system in the neointima formation after vascular injury in guinea pigs. Life Sci 1994; 54: 87–92.CrossRefGoogle Scholar
  6. Craven DJ, Symonds EM, Peel AJ, Maynard PV, Renin in subcellular fractions of endometrium, decidua, amnion and chorion. Biomed Res 1986; 7: 321–325.Google Scholar
  7. Craven DJ, Symonds EM. Production of active/inactive renin by in vitro cultures of human chorion. IRCS Med Sci 1979;7:196.Google Scholar
  8. Day RP, Reid IA, Renin activity in dog brain: enzymological similarity to cathepsin D. Endocrinology 1976; 99: 93–100.PubMedCrossRefGoogle Scholar
  9. Dietl J, Ruck P, Horny HP, Handgretinger R, Marzusch K, Ruck M, Kaiserling E, Griesser H, Kabelitz D, The decidua of early human pregnancy: immunohistochemistry and function of immunocompetent cells. Gynecol Obstet Invest 1992; 33: 197–204.PubMedCrossRefGoogle Scholar
  10. Dorer FE, Lentz KE, Kahn JR, Levine M, Skeggs LT, A comparison of the substrate specificities of cathepsin D and pseudorenin. J Biol Chem 1978; 253: 3140–3142.PubMedGoogle Scholar
  11. Galen FX, Devaux C, Atlas S, Guyenne T, Menard J, Corvol P, Simon D, Cazaubon C, Richer P, Bedouaille G, Richaud JP, Gross P, Pau B. New monoclonal antibodies directed against human renin, Powerful tools for the investigation of the renin system. J Clin Invest 1984; 74: 723–735.PubMedCrossRefGoogle Scholar
  12. Hackenthal E, Hackenthal R, Hilgenfeldt U, Isorenin, pseudorenin, cathepsin D and renin: a comparative enzymatic study of angiotensin-forming enzymes. Biochim Biophys Acta 1978; 522: 574–588.PubMedCrossRefGoogle Scholar
  13. Hanssens M, Vercruysse L, Pijnenborg R, Spitz B, Keirse MJNC, Van Assche FA. Localization of renin in uterine and placental tissues of normal term human pregnancies. Am J Hypertens 1994;7:137A.Google Scholar
  14. Hunt JS. Current topic: the role of macrophages in the uterine response to pregnancy. Placenta 1990; 11: 467–475.PubMedCrossRefGoogle Scholar
  15. Ihara Y, Tail S, Mori T, Expression of renin and angiotensinogen genes in the human placental tissues. Endocrinol Jpn 1987; 34: 887–896.PubMedCrossRefGoogle Scholar
  16. Kalenga MK, De Hertogh R, Vankrieken L, Thomas K, Dosage immunoradiométrique de la rénine totale et de la rénine active dans les annexes foetales humaines. Rev Fr Gynécol Obstét 1991; 86: 357–365.PubMedGoogle Scholar
  17. Karlsson R, Michaelsson A, Mattson L. Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods 1991; 145: 229–240.PubMedCrossRefGoogle Scholar
  18. Kimura B, Summers C, Phillips MI, Changes in skin angiotensin II receptors in rats during wound healing. Biochem Biophys Res Commun 1992; 187: 1083–1090.PubMedCrossRefGoogle Scholar
  19. Koibuchi Y, Lee WS, Gibbons GH, Pratt RE, Role of transforming growth factor-βl in the cellular growth response to angiotensin II. Hypertension 1993; 21: 1046–1050.PubMedCrossRefGoogle Scholar
  20. Leibovich SJ, Ross R. The role of the macrophage in wound repair, A study with hydrocortisone and antimacrophage serum. Am J Pathol 1975; 78: 71–100.PubMedGoogle Scholar
  21. Li CY, Ziesmer SC, Lazcano-Villareal O, Use of azide and hydrogen peroxide as an inhibitor for endogenous peroxidase in the immunoperoxidase method. J Histochem Cytochem 1987; 35: 1457–1460.PubMedCrossRefGoogle Scholar
  22. Meekins JW, Pijnenborg R, Hanssens M, McFadyen IR, Van Assche FA. Immunohistochemical identification of placental bed biopsies and the implications for the inclusion of specimens when studying the spiral artery response to pregnancy. Hypertens Pregnancy 1994; 13: 61–69.CrossRefGoogle Scholar
  23. Naftalin A, Pratt R, Dzau VJ, Induction of PDGF A-chain and c-myc gene expressions by angiotensin II in cultured rat vascular smooth muscle cells. J Clin Invest 1989; 83: 1419–1424.CrossRefGoogle Scholar
  24. Nakane PK, Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study on pituitary glands of the rat. J Histochem Cytochem 1968; 16: 557–561.PubMedCrossRefGoogle Scholar
  25. Pinet F, Corvol MT, Bourguignon J, Corvol P, Isolation and characterization of renin-producing human chorionic cells in culture. J Clin Endocrinol Metab 1988; 67: 1211–1220.PubMedCrossRefGoogle Scholar
  26. Poisner AM, Cheng HC, Wood GW, Poisner R. Storage and release of renin and hCG in trophoblast from human chorion laeve. Trophoblast Res 1983; 1: 279–288.Google Scholar
  27. Poisner AM, Agrawal P, Poisner R, Renin release from human chorionic trophoblasts in vitro: the role of cyclic AMP and protein kinase C. Trophoblast Res 1987; 2: 45–60.Google Scholar
  28. Poisner AM, Thrailkill K, Poisner R, Handwerger S. Cyclic AMP as a second messenger for prorenin release from human decidual cells. Placenta 1991; 12: 263–267.PubMedCrossRefGoogle Scholar
  29. Powell JS, Clozel JP, Müller RKM, Kuhn H, Hefti F, Hosang M, Baumgartner HR, Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 1989; 243: 186–188.CrossRefGoogle Scholar
  30. Prescott MF, Webb RL, Reidy MA. Angiotensin converting enzyme inhibitor versus angiotensin II, AT1 receptor antagonist. Effects on smooth muscle cell migration and proliferation after balloon catheter injury. Am J Pathol 1991; 139: 1291–1296.Google Scholar
  31. Roque AL, Jafarey NA, Coulter P, A stain for the histochemical demonstration of nucleic acids. Exp Mol Pathol 1965; 4: 266–274.CrossRefGoogle Scholar
  32. Shaw KJ, Do YS, Kjos S, Anderson PW, Shinagawa T, Dubeau L, Hsueh WA, Human decidua is a major source of renin. J Clin Invest 1989; 83: 2085–2092.PubMedCrossRefGoogle Scholar
  33. Skinner SL, Lumbers ER, Symonds EM. Renin concentration in human fetal and maternal tissues. Am J Obstet Gynecol 1968; 101: 529–533.PubMedGoogle Scholar
  34. Stirling D, Magness RR, Stone R, Waterman MR, Simpson ER, Angiotensin II inhibits luteinizing hormone-stimulated cholesterol side chain cleavage expression and stimulates basic fibroblast growth factor expression in bovine luteal cells in primary culture. J Biol Chem 1990; 265: 5–8.PubMedGoogle Scholar
  35. Symonds EM, Stanley MA, Skinner SL, Production of renin by in vitro cultures of human chorion and uterine muscle. Nature 1968; 217: 1152–1153.PubMedCrossRefGoogle Scholar
  36. Van der Loos C, Das P, Van den Oord J, Houthoff HJ. Multiple immunoenzyme staining techniques. Use of fluoresceinated, biotinylated and unlabeled monoclonal antibodies. J Immunol Meth 1989; 117: 45–52.CrossRefGoogle Scholar
  37. Vandesande F, Dierickx K, Immunocytochemical demonstration of separate vasotocinergic and mesotocinergic neurons in the amphibian hypothalamic magnocellular neurosecretory system. Cell Tiss Res 1976; 175: 289–296.Google Scholar
  38. Vince GS, Starkey PM, Jackson MC, Sargent IL, Redman CWG, Flow cytometric characterisation of cell populations in human pregnancy decidua and isolation of decidual macrophages. J Immunol Meth 1990; 132: 181–189.CrossRefGoogle Scholar
  39. Warren AY, Craven DJ, Symonds EM, Production of active and inactive renin by cultured explants from the human female genital tract. Br J Obstet Gynaecol 1982; 89: 628–632.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Myriam Hanssens
    • 1
  • Lisbeth Vercruysse
    • 1
  • Lieve Verbist
    • 1
  • Robert Pijnenborg
    • 1
  • Marc J. N. C. Keirse
    • 2
  • F. André Van Assche
    • 1
  1. 1.The Department of Obstetrics and GynaecologyUniversity of LeuvenLeuvenBelgium
  2. 2.The Department of Obstetrics and GynaecologyLeiden UniversityLeidenThe Netherlands

Personalised recommendations