Advertisement

Angiotensin Peptides in the Brain

  • D. J. Campbell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 377)

Abstract

Although the concept of a brain angiotensin system has existed for many years, several aspects of such a system remain uncertain (Bunnemann et al., 1993). Angiotensinogen is the obligatory precursor of angiotensin peptides, and the brain contains high levels of angiotensinogen (Printz et al., 1978; Lewicki et al., 1978) and angiotensinogen mRNA (Campbell et al., 1984; Campbell, Habener, 1986). However, both immunocytochemical (Campbell et al., 1991b) and hybridization in situ studies (Stornetta et al., 1988; Bunnemann et al., 1992) show that angiotensinogen and its mRNA are localized to glia, and are not detectable in neurons. Therefore, despite persuasive immunocytochemical studies demonstrating immunoreactive angiotensin II (Ang II) in neurons (Lind et al., 1985; Oldfield et al., 1989), the identity of this neuronal immunoreactive material is uncertain, and the possible role of Ang II as a neurotransmitter remains tenuous. An alternative possibility is the extracellular formation of Ang II by enzymatic cleavage of angiotensinogen released by glia, with subsequent uptake by neurons or diffusion to distant receptors (Bunnemann et al., 1993).

Keywords

High Performance Liquid Chromatography Angiotensin Converting Enzyme Angiotensin Converting Enzyme Inhibition Median Eminence Prolyl Endopeptidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunnemann B, Fuxe K, Metzger R, Bjelke B, Ganten D. The semi-quantitative distribution and cellular localization of angiotensinogen mRNA in the rat brain. J Chem Neuroanat 1992; 5: 245–262.PubMedCrossRefGoogle Scholar
  2. Bunnemann B, Fuxe K, Ganten D. The renin-angiotensin system in the brain: An update 1993. Regul Pept 1993; 46: 487–509.PubMedCrossRefGoogle Scholar
  3. Campbell DJ, Bouhnik J, Menard J, Corvol P. Identity of angiotensinogen precursors of rat brain and liver. Nature 1984; 308: 206–208.PubMedCrossRefGoogle Scholar
  4. Campbell DJ, Habener JF. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J Clin Invest 1986; 78: 31–39.PubMedCrossRefGoogle Scholar
  5. Campbell DJ, Kladis A, Duncan A-M. Nephrectomy, converting enzyme inhibition and angiotensin peptides. Hypertension 1993; 22: 513–522.PubMedCrossRefGoogle Scholar
  6. Campbell DJ, Lawrence AC, Towrie A, Kladis A, Valentijn AJ. Differential regulation of angiotensin peptide levels in plasma and kidney of the rat. Hypertension 1991a; 18: 763–773.PubMedCrossRefGoogle Scholar
  7. Campbell DJ, Sernia C, Thomas WG, Oldfield BJ. Immunocytochemical localization of angiotensinogen in rat brain: dependence of neuronal immunoreactivity on method of tissue processing. J Neuroendocrinol 1991b; 3: 653–660.PubMedCrossRefGoogle Scholar
  8. Chappell MC, Brosnihan KB, Diz DI, Ferrario CM. Identification of angiotensin-(1-7) in rat brain. Evidence for differential processing of angiotensin peptides. J Biol Chem 1989; 264: 16518–16523.Google Scholar
  9. De Silva PE, Husain A, Smeby RR, Khairallah PA. Measurement of immunoreactive angiotensin peptides in rat tissues: some pitfalls in angiotensin II analysis. Anal Biochem 1988; 174: 80–87.PubMedCrossRefGoogle Scholar
  10. Deschepper CF, Ganong WF. Interference of eluates from octadecyl cartridges with an angiotensin II radioimmunoassay. Peptides 1986; 7: 365–367.PubMedCrossRefGoogle Scholar
  11. Fox J, Guan S, Hymel AA, Navar LG. Dietary Na and ACE inhibition effects on renal tissue angiotensin I and II and ACE activity in rats. Am J Physiol 1992; 262:F902–F909.PubMedGoogle Scholar
  12. Ganten D, Hermann K, Bayer C, Unger Th, Lang RE. Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science 1983; 221: 869–871.PubMedCrossRefGoogle Scholar
  13. Hackenthal E, Hackenthal R, Hilgenfeldt U. Purification and partial characterization of rat brain acid proteinase (isorenin). Biochim Biophys Acta 1978; 522: 561–573.PubMedCrossRefGoogle Scholar
  14. Hutchinson JS, Mendelsohn FAO. Hypotensive effects of captopril administered centrally in intact conscious spontaneously hypertensive rats and peripherally in anephric anaesthetized spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 1980; 7: 555–558.PubMedCrossRefGoogle Scholar
  15. Lawrence AC, Clarke IJ, Campbell DJ. Angiotensin peptides in brain and pituitary of rat and sheep. J Neuroendocrinol 1992a; 4: 237–244.PubMedCrossRefGoogle Scholar
  16. Lawrence AC, Clarke IJ, Campbell DJ. Increased angiotensin-(1-7) in hypophysial-portal plasma of conscious sheep. Neuroendocrinology 1992b; 55: 105–110.PubMedCrossRefGoogle Scholar
  17. Lawrence AC, Evin G, Kladis A, Campbell DJ. An alternative strategy for the radioimmunoassay of angiotensin peptides using amino-terminal-directed antisera: measurement of eight angiotensin peptides in human plasma. J Hypertens 1990; 8: 715–724.PubMedCrossRefGoogle Scholar
  18. Lewicki JA, Fallon JH, Printz MP. Regional distribution of angiotensinogen in rat brain. Brain Res 1978; 158: 359–371.PubMedCrossRefGoogle Scholar
  19. Lind RW, Swanson LW, Ganten D. Organization of angiotensin II immunoreactive cells and fibres in the rat central nervous system. Neuroendocrinology 1985; 40: 2–24.PubMedCrossRefGoogle Scholar
  20. Oldfield BJ, Ganten D, McKinley MJ. An ultrastructural analysis of the distribution of angiotensin II in the rat brain. J Neuroendocrinol 1989; 1: 121–128.PubMedCrossRefGoogle Scholar
  21. Phillips MI, Kimura B. Brain angiotensin in the developing spontaneously hypertensive rat. J Hypertens 1988; 6: 607–612.PubMedCrossRefGoogle Scholar
  22. Phillips MI, Kimura BK. Levels of brain angiotensin in the spontaneously hypertensive rat and treatment with ramiprilat. J Hypertens 1986; 4(Suppl. 6):S391–S394.Google Scholar
  23. Phillips MI, Mann JFE, Haebara H, Hoffman WE, Dietz R, Schelling P, Ganten D. Lowering of hypertension by central saralasin in the absence of plasma renin. Nature 1977; 270: 445–447.PubMedCrossRefGoogle Scholar
  24. Phillips MI, Stenstrom B. Angiotensin II in rat brain comigrates with authentic angiotensin II in high pressure liquid chromatography. Circ Res 1985; 56: 212–219.PubMedCrossRefGoogle Scholar
  25. Pohl M, Carayon A, Laguzzi R, Nosjean A, Simonnet G, Hamon M, Legrand J-L, Cesselin F. Partial characterization of angiotensin II-like material extracted from the rat brain. J Hypertens 1986; 4(suppl 6):S446–S449.Google Scholar
  26. Printz MP, Printz JM, Gregory TJ. Identification of angiotensinogen in animal brain homogenates: relationship to a possible angiotensin I-generating pathway. Circ Res 1978; 43(Suppl I): I–21–I–27.Google Scholar
  27. Simonnet G, Carayon A, Alard M, Cesselin F, Lagoguey A. Evidence for an angiotensin II-like material and for a rapid metabolism of angiotensin II in the rat brain. Brain Res 1984; 304: 93–103.PubMedCrossRefGoogle Scholar
  28. Sirett NE, Bray JJ, Hubbard JI. Brain angiotensin II: Discrepancy between estimates by a radioreceptor assay and a radioimmunoassay. Proc Univ Otago Med Sch 1980; 58: 80–82.Google Scholar
  29. Stornetta RL, Hawelu-Johnson CL, Guyenet PG, Lynch KR. Astrocytes synthesize angiotensinogen in brain. Science 1988; 242: 1444–1446.PubMedCrossRefGoogle Scholar
  30. Trolliet MR, Phillips MI. The effect of chronic bilateral nephrectomy on plasma and brain angiotensin. J Hypertens 1992; 10: 29–36.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • D. J. Campbell
    • 1
  1. 1.St. Vincent’s Institute of Medical ResearchFitzroyAustralia

Personalised recommendations