Advertisement

AT1 Receptors and Angiotensin Actions in the Brain and Neuronal Cultures of Normotensive and Hypertensive Rats

  • Mohan K. Raizada
  • Di Lu
  • Colin Sumners
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 377)

Abstract

It is now widely accepted that a functional renin-angiotensin system is intrinsic to the brain and is of great physiological and pathophysiological importance. Over the past twenty-five years evidence has been mounting that demonstrates the profound effects of angiotensin II (AII) on fluid balance and cardiovascular regulation. Activation by AII of specific neuronal receptors localized on the cardioregulatory-relevant areas of the brain, is the key step in a cascade of cellular events that ultimately lead to the increase in blood pressure (BP) and modulation of baroreceptor function. With this review we will discuss: 1) the physiological evidence supporting the role of brain AII in BP control; 2) localization of AII receptor subtypes in the brain; 3) evidence demonstrating the usefulness of an in vitro neuronal cell culture system to study the cellular, molecular and genetic basis of the brain AII dependent-hypertensive state; and 4) our current understandings of the cellular mechanism of AII actions in the brain with the use of this in vitro neuronal culture system.

Keywords

Neuronal Culture Supraoptic Nucleus Spontaneously Hypertensive Vasopressin Release Central Injection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Saavedra JM. Brain and pituitary angiotensin. Endocrine Rev. 1992; 13: 329–380.Google Scholar
  2. 2.
    Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM and Smith RD. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol. Rev. 1993; 45: 205–251.PubMedGoogle Scholar
  3. 3.
    Wright JW and Harding JW. Brain angiotensin receptor subtypes in the control of physiological and behavioral responses. Neurosci. Biobehavioral Rev. 1994; 18: 21–53.Google Scholar
  4. 4.
    Phillips MI, Galli SM and Richards EM. Central actions of angiotensin. In Nergo-Vilar A and Comm PM, eds. Peptide hormones: Effects and mechanisms of action. CRC Press, Boca Raton, 1988:219–258.Google Scholar
  5. 5.
    Valtmar A, Culman J, Qadri F, Rascher W and Unger T. Involvement of adrenergic and angiotensinogenic receptors in the PVN in angiotensin II-induced vasopressin release. J. Pharmacol. Exp. Ther. 1992; 263: 1253–1260.Google Scholar
  6. 6.
    Camacho A and Phillips MI. Separation of drinking and pressor responses to central angiotensin by monoamines. Am. J. Physiol. 1981; 240:R106–110.PubMedGoogle Scholar
  7. 7.
    Brody MJ, Fink GD, Biggy J, Haywood JR, Gordon FJ and Johnson AK. Role of anteroventral third ventricle (AV3V) region in experimental hypertension. Circ. Res. 1978; 43: 102–113.Google Scholar
  8. 8.
    Jones DE. Injection of phentolamine into the anterior hypothalamus-preoptic area of rats blocks both pressor and drinking responses produced by central administration of angiotensin II. Brain Res. Bull. 1984; 13: 127–133.PubMedGoogle Scholar
  9. 9.
    Bellin SI, Landas S and Johnson AK. Localized injections of 6-hydroxy-dopamine into terminalis associated structures: effects on experimentally-induced drinking and pressor responses. Brain Res. 1987; 416: 75–83.PubMedGoogle Scholar
  10. 10.
    Cunningham JT and Johnson AK. The effects of central norepinephrine infusion on drinking behavior induced by angiotensin after 6-hydroxy dopamine injections into the anteroventral third ventricle (AV3V). Brain Res. 1991; 558: 112–116.PubMedGoogle Scholar
  11. 11.
    Rowe BP, Kalivar PW and Speth RC. Autoradiographic localization of angiotensin II receptor binding sites on nor-adrenergic neurons of the locus coereleus of the rat. J. Neurochem. 1990; 55: 533–540.PubMedGoogle Scholar
  12. 12.
    Moore RY and Bloom FE. Central catecholamine neuron systems: anatomy and physiology of the norepinephrine systems. Ann. Rev. Neurosci. 1979; 2: 113–168.PubMedGoogle Scholar
  13. 13.
    Swanson LW, Sawchenko PE, Berod A, Hastman BK, Helle KB and Vanorden DE. An immunohisto-chemical study of the organization of catecholaminergic cells and terminal fields in the paraventricular and supraoptic nuclei of the hypothalamus. J. Comp. Neurol. 1981; 196: 271–285.PubMedGoogle Scholar
  14. 14.
    Gehlert DR, Gackenheimer S, Reel JK, Lin H-S, Steinberg MI. Nonpeptide angiotensin II receptor antagonists discriminate subtypes of[125I] angiotensin II binding sites in the rat brain. Eur J Pharmacol 1990; 187: 125–126.Google Scholar
  15. 15.
    Rowe BP, Grove KL, Saylor DL and Speth RC. Angiotensin II receptor subtypes in the rat brain. Europ J Pharmacol 1990; 186: 339–342.Google Scholar
  16. 16.
    Obermueller N, Unger TH, Culman J, Gohike P, de Gasparo M, Bottari SP. Distribution of angiotensin II receptor subtypes in rat brain nuclei. Neurosci Lett 1991; 132: 11–15.Google Scholar
  17. 17.
    Song K, Allen A, Paxinos G and Mendelsohn FAO. Mapping of angiotensin II receptor subtype heterogeneity in rat brain. J Comp Neurol 1992; 316: 467–490.PubMedGoogle Scholar
  18. 18.
    Saavedra JM, Tsutsumi K, Strömberg C, Seltzer A, Michels K, Zorad S and Viswanathan M. Localization, characterization, development and function of brain angiotensin II receptor subtypes. In: Cellular and Molecular Biology of the Renin-Angiotensin System, eds. Raizada MK, Phillips MI and Sumners C. CRC Press, Boca Raton, FL, 1993: 357–378).Google Scholar
  19. 19.
    Palaic D, Khairallah PA. Inhibition of noradrenaline uptake by angiotensin. J Pharm Pharmacol 1967; 19: 396–397.PubMedGoogle Scholar
  20. 20.
    Sumners C, Phillips MI. Central injection of angiotensin II alters catecholamine activity in rat brain. Am J Physiol 1983; 244:R257–R263.PubMedGoogle Scholar
  21. 21.
    Qadri F, Badoer E, Stadler T and Unger T. Angiotensin II-induced norepinephrine release from anterior hypothalamus in conscious rats: a brain microdialysis study. Brain Res 1991; 563: 137–143.PubMedGoogle Scholar
  22. 22.
    Stadler T, Veltmar A, Qadri F, and Unger T. Angiotensin II evokes noradrenaline release from the paraventricular nucleus in conscious rats. Brain Res 1992; 569: 117–122.PubMedGoogle Scholar
  23. 23.
    Severs WB, Summy-Long J, Taylor JS and Connor JD. A central effect of angiotensin: release of pituitary pressor material. J Pharmacol Exp Ther 1970; 174: 27–34.PubMedGoogle Scholar
  24. 24.
    Unger T, Rascher W, Shuster C, Pavlovitch R, Schoniga A, Dietz R and Ganten D. Central blood pressure effect of substance P and angiotensin II: role of sympathetic nervous system and vasopressin. Eur J Pharmacol 1981; 71: 33–42.PubMedGoogle Scholar
  25. 25.
    Hutchinson JS, Schelling P, Mohring J and Ganten D. Pressor action of centrally perfused angiotensin II in rats with hereditary hypothalamus diabetes insipidus. Endocrinol 1976; 99: 819–823.Google Scholar
  26. 26.
    Veltmar A, Stadler T, Qadri F and Unger T. The angiotensin II induced vasopressin release is mediated through a central catecholaminergic pathway. J Hypertension 1992; 10 (Suppl 4):S23–S27.Google Scholar
  27. 27.
    Veltmar A, Stadler T, Qadri F and Unger T. Influence of angiotensin II on the release of noradrenaline in the paraventricular nucleus-a microdialysis study in conscious rats. Nieren-Hochdruckkr 1991; 20: 540–542.Google Scholar
  28. 28.
    Chiu AT, Leung KH, Smith RD and Timmermans PBMWM. Defining angiotensin receptor subtypes. In: Raizada MK, Phillips MI and Sumners C. Cellular and molecular biology of the renin angiotensin system. CRC Press, Boca Raton, FL 1993:379–411.Google Scholar
  29. 29.
    Koepke JP, Bovy PR, McMahon EG, Olins GM, Reitz DB, Salles KS, Schuh JR, Trapani AJ and Blaine ED. Central and peripheral actions of a non-peptide angiotensin II receptor antagonist. Hypertension 1990; 15: 841–847.PubMedGoogle Scholar
  30. 30.
    Fregly MJ, Rowland NE. Effect of a non-peptide angiotensin II receptor antagonist, DuP753, on angiotensin related water intake in rats. Brain Res Bull 1991; 27: 97–100.PubMedGoogle Scholar
  31. 31.
    Hogarty DC, Speakman EA, Puig V and Phillips MI. The role of AT1 and AT2 receptors in the pressor, drinking and vasopressin responses to angiotensin II. Brain Res 1992; 586: 389–395.Google Scholar
  32. 32.
    Toney GM and Porter JP. Functional role of brain AT1 and AT2 receptors in the central angiotensin II pressor response. Brain Res 1993; 603: 57–63.PubMedGoogle Scholar
  33. 33.
    Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE and Dzau VJ. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven-transmembrane receptors. J Biol Chem 1993; 268: 24539–24542.PubMedGoogle Scholar
  34. 34.
    Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T and Inagami T. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 1993; 268: 24543–24546.PubMedGoogle Scholar
  35. 35.
    Tsutsumi K and Saavedra JM. Quantitative autoradiography reveals different angiotensin II receptor subtypes in selected rat brain nuclei. J Neurochem 1991; 56: 348–351.PubMedGoogle Scholar
  36. 36.
    Wong PC, Hart SD, Zaspel AM, Chiu AT, Ardecky RJ, Smith RD and Timmermans PBMWM. Functional studies of non-peptide angiotensin II receptor subtype-specific ligands: DuP753 (AII-1) and PD123177 (AII-2). J Pharmacol Exp Ther 1990; 255: 584–592.PubMedGoogle Scholar
  37. 37.
    Bunnemann B, Iwai N, Metzger R, Fuxe K, Inagami T and Ganten D. The distribution of angiotensin II AT, receptor subtype mRNA in the rat brain. Neuroscience Lett 1993; 142: 155–158.Google Scholar
  38. 38.
    Qadri F, Culman J, Veltmar A, Maas K, Rascher W and Unger T. Angiotensin II-induced vasopressin release is mediated through alpha-1 adrenoceptors and angiotensin II AT1 receptors in supraoptic nucleus. J Pharmacol Exp Ther 1993; 267: 567–574.PubMedGoogle Scholar
  39. 39.
    Trippodo NC and Frolich ED. Similarities of genetic (spontaneous) hypertension: Man and rat. Circ Res 1981; 48: 309–319.PubMedGoogle Scholar
  40. 40.
    Amann FW, Bolli P, Kiowski W and Buhler FR. Enhanced α-adrenoceptor mediated vasoconstriction in essential hypertension. Hypertension 1981; 3: 1119–1123.Google Scholar
  41. 41.
    Goldstein DS. Plasma catecholamines and essential hypertension: An analytical review. Hypertension 1983; 5: 86–99.PubMedGoogle Scholar
  42. 42.
    Weyhenmeyer JA and Phillips MI. Angiotensin II like immunoreactivity in the brain of spontaneously hypertensive rat. Hypertension 1982; 4: 514–523.PubMedGoogle Scholar
  43. 43.
    Phillips MI and Kimura B. Brain angiotensin in the developing spontaneously hypertensive rat. J Hypertension 1988; 6: 607–612.Google Scholar
  44. 44.
    Meyer JM, Feiten DL and Weyhenmeyer JA. Levels of immunoreactive angiotensin II in microdisected nuclei from adult WKY and SH rat brain. Clin Exp Hypertension 1989; [A] 11:103–117.Google Scholar
  45. 45.
    Chevillard C and Saavedra JM. Angiotensin converting enzyme (Kininase II) in pituitary gland of SH rats. Reg Pep 1983; 5: 333–341.Google Scholar
  46. 46.
    Schelling P, Meyer D, Loos HE, Speck G, Phillips MI, Johnson AK and Ganten D. A micromethod for the measurement of renin in brain nuclei: its application in spontaneously hypertensive rats. Neuropharmacol 1982; 21: 455–463.Google Scholar
  47. 47.
    Yongue BG, Angulo JA, Mcewen BS and Meyer MM. Brain and liver angiotensinogen mRNA in genetic hypertensive and normotensive rats. Hypertension 1991; 17: 485–491.PubMedGoogle Scholar
  48. 48.
    Plunkett LM and Saavedra JM. Increased angiotensin binding affinity in the nucleus tractus solitarius of spontaneously hypertensive rats. Proc Natl Acad Sci USA 1985; 82: 7721–7724.PubMedGoogle Scholar
  49. 49.
    Saavedra JM, Correa FMA, Plunkett LM, Isreal A, Kurihara M and Shigematsu K. Binding of angiotensin II and atrial natriuretic peptide in brain of hypertensive rats. Nature 1986; 320: 758–760.PubMedGoogle Scholar
  50. 50.
    Saavedra JM, Correa FMA Kurihara M and Shigematsu K. Increased number of angiotensin II receptors in the subfornical organ of spontaneously hypertensive rats. J Hypertension 1986; A:S27–S30.Google Scholar
  51. 51.
    Gehlert DR, Speth RC and Wamsley JK. Quantitative autoradiography of angiotensin II receptors in the SHR brain. Peptides 1986; 7: 1021–1027.PubMedGoogle Scholar
  52. 52.
    Hwang BH, Harding JW, Liu DK, Hibbard LS, Wieczorek CM and Wu JY. Quantitative autoradiography of 125[Sar1Ile8]-angiotensin II binding in the brain of spontaneously hypertensive rats. Brain Res Bull 1986; 16: 75–82.PubMedGoogle Scholar
  53. 53.
    Gutkind JH, Kurihara M, Castrén E and Saavedra JM. Increased concentrations of angiotensin II binding sites in selected brain areas of spontaneously hypertensive rats. J Hypertension 1988; 6: 67–84.Google Scholar
  54. 54.
    Healy DP and Zhan N. Angiotensin II receptors in the solitary-vagal area of hypertensive rats. Brain Res Bull 1986; 19: 355–361.Google Scholar
  55. 55.
    Raizada MK, Sumners C and Lu D. Angiotensin II type 1 receptor mRNA levels in the brains of normotensive and spontaneously hypertensive rats. J Neurochem 1993; 60: 1949–1952.PubMedGoogle Scholar
  56. 56.
    Phillips, MI, Mann JFE, Haebara H, Hoffman WE, Dietz R, Schelling P and Ganten D. Lowering of hypertension by central saralasin in the absence of plasma renin. Nature 1977; 270: 445–447.PubMedGoogle Scholar
  57. 57.
    McDonald W, Wickre C, Aumann S, Ban D and Meffitt B. The sustained antihypertensive effect of chronic ICV infusion of angiotensin antagonist in SH rat. Endocrinol 1980; 107: 1305–1308.Google Scholar
  58. 58.
    Hutchinson JS, Mendelsohn FAO and Doyle AE. Blood pressure responses of conscious normotensive and spontaneously hypertensive rats to IVT and peripheral administration of captopril. Hypertension 1980; 2: 546–550.PubMedGoogle Scholar
  59. 59.
    Okuno T, Nagahama S, Lindheimer MD and Oparil S. Attenuation of the development of spontaneously hypertension in rats of chronic, central administration of captopril. Hypertension 1983; 5: 653–663.PubMedGoogle Scholar
  60. 60.
    Unger T, Kaufmann-Buhler L, Scholkens B and Ganten D. Brain converting enzyme inhibition: a possible mechanism for the antihypertensive action of captopril in spontaneously hypertensive rats. Eur J Pharmacol 1981; 70: 467–470.PubMedGoogle Scholar
  61. 61.
    Berecek KH, Okuno T, Nagahama S and Oparil S. Altered vascular reactivity and baroreflex sensitivity induced by chronic central administration of captopril in the spontaneously hypertensive rat. Hypertension 1983; 5: 589–700.Google Scholar
  62. 62.
    Berecek KH, Kirk KA, Nagahama S and Oparil S. Sympathetic function in SHR after chronic administration of captopril. Am J Physiol 1987; 252.H796–H806.PubMedGoogle Scholar
  63. 63.
    Unger TH, Kaufman-Buhler I, Scholkens BA and Ganten D. Brain converting enzyme inhibition: A possible mechanism for the antihypertensive action of captopril in SH rat. Eur J Pharmacol 1981; 70: 467–478.PubMedGoogle Scholar
  64. 64.
    Cheng SWT, Swerds BH, Kirk KA and Berecek KH. Baroreflex function in lifetime captopril treated SH rat. Hypertension 1989; 13: 63–69.PubMedGoogle Scholar
  65. 65.
    Cheng SWT, Kirk KA, Robertson JD and Berecek KH. Brain AII and baroreceptor reflex functions. Hypertension 1989; 14: 274–281.PubMedGoogle Scholar
  66. 66.
    Berecek KH, King SJ and Wu JN. Angiotensin-converting enzyme and converting enzyme inhibitors. In: Cellular and Molecular Biology of the Renin-Angiotensin System, eds. Raizada MK, Phillips MI and Sumners C, CRC Press, Boca Raton, FL 1993:183–220.Google Scholar
  67. 67.
    Diz DA, Kohara K and Ferrario CM. Normalization of angiotensin II receptors in the dorsal medulla oblongata of spontaneously hypertensive rats follows converting enzyme inhibition and increases in plasma angiotensin (1-7) concentrations. [Abstract] Am J Hypertension 1992; 5:16A.Google Scholar
  68. 68.
    Nazarali A-J, Gutkind JS, Correa FMA and Saavedra JM. Decreased angiotensin II receptors in subfornical organ of spontaneously hypertensive rats after chronic antihypertensive treatment with Enalapril. Am J Hypertension 1990; 3: 59–61.Google Scholar
  69. 69.
    Brody MJ, Varner K-J, Vasquez EC and Lewis SJ. Central nervous system and the pathogenesis of hypertension: sites and mechanisms. Hypertension 1991; 18 (Suppl. III):III–7–III–12.Google Scholar
  70. 70.
    Yang R-H, Jin H, Wyss JM and Oparil S. Depressor effect of blocking angiotensin type 1 receptors in anterior hypothalamus. Hypertension 1992; 19: 475–481.PubMedGoogle Scholar
  71. 71.
    Yang R-H, Jin H, Chen S-J, Wyss JM and Oparil S. Blocking hypothalamic AT1 receptors lowers blood pressure in salt-sensitive rats. Hypertension 1992; 20: 755–762.PubMedGoogle Scholar
  72. 72.
    Berecek KH, Swords BH, Lo S and Kirk KA. Effect of angiotensin converting enzyme inhibitors upon brain angiotensin II binding. J Hypertension 1992; 10: 545–552.Google Scholar
  73. 73.
    Gyurko R, Wielbo D and Phillips MI. Antisense inhibition of AT1 receptor mRNA and angiotensinogen mRNA in the brain of spontaneously hypertensive rats reduces hypertension. Regulartory Peptides 1993; 49: 167–174.Google Scholar
  74. 74.
    Bader M, Zhao Y, Sander M, Lee MA, Bachmann J, Böhm M, Djavidani B, Peters J, Mullins JJ and Ganten D. Role of tissue renin in the pathophysiology of hypertension in TGR (MREN2) 27 rats. Hypertension 1992; 19: 681–686.PubMedGoogle Scholar
  75. 75.
    Bader M, Lee MA, Zhao Y, Böhm M, Bachmann J, Sander M, Djavidani B, Bachmann S, Zimmermann F, Wilbertz J, Zeh K, Wagner J, Peters J and Ganten D. Renin gene expression and hypertension in transgenic animals. In: Cellular and Molecular Biology of the Renin Angiotensin System, eds. Raizada MK, Phillips MI, Sumners C, CRC Press, Boca Raton, FL, 1993:59–93.Google Scholar
  76. 76.
    Moriguchi A, Morris M, Brosnihan KB and Ferrario CM. Angiotensin II and angiotensin-(l-7) augment the local release of vasopressin from the paraventricular nucleus (PVN) and supraoptic nucleus (SON). [Abstract #240] Hypertension 1993; 21:587.Google Scholar
  77. 77.
    Raizada, MK, Yang JW, Phillips MI and Fellows RE. Rat brain cells in primary culture: Characterization of angiotensin II binding sites. Brain Res 1981; 207: 343–355.PubMedGoogle Scholar
  78. 78.
    Sumners C and Raizada MK. Catecholamine-angiotensin II receptor interaction in primary cultures of rat brain. Am J Physiol 1984; 246:C502–C509.PubMedGoogle Scholar
  79. 79.
    Sumners C, Myers LM, Kalberg CJ, Raizada MK. Physiological and pharmacological comparisons of angiotensin II receptors in neuronal and astrocyte glial cultures. Prog Neurobiol 1990; 34: 355–385.PubMedGoogle Scholar
  80. 80.
    Sumners C, Tang W, Zelezna B and Raizada MK. Angiotensin II receptor subtypes are coupled with distinct signal transduction mechanisms in neurons and astroglia from rat brain. Proc Nat’l Acad Sci USA 1991; 88: 7567–7571.Google Scholar
  81. 81.
    Sumners C and Raizada MK. Angiotensin II receptor subtypes in neuronal cultures. In: Cellular and Molecular Biology of the Renin-Angiotensin System, eds. Raizada MK, Phillips MI, Sumners C, CRC Press, Boca Raton, FL, 1993:379–411.Google Scholar
  82. 82.
    Raizada, MK, Lu D, Tang W, Kurian P and Sumners C. Increased angiotensin II type 1 receptor gene expression in neuronal cultures from spontaneously hypertensive rats. Endocrinol 1993; 132: 1715–1722.Google Scholar
  83. 83.
    Sumners C, Raizada MK, Kang J, Lu D and Posner P. Receptor mediated effects of angiotensin II on neurons. Frontiers in Neurosci (in Press).Google Scholar
  84. 84.
    Cook VI, Grove KL, McManamin KM, Carter MR, Harding JW and Speth RC. The AT2 angiotensin receptor subtype predominates in the 18 gestation fetal rat brain. Brain Res 1991; 560: 334–336.PubMedGoogle Scholar
  85. 85.
    Grady EF, Sechi LA, Griffin CA, Shambelan M and Kalinyak JE. Expression of AT2 receptors in the developing rat fetus. J Clin Invest 1991; 88: 921–933.PubMedGoogle Scholar
  86. 86.
    Millan MA, Kiss A and Aguilera G. Developmental changes in brain angiotensin receptors in the rat. Peptides 1991; 12: 712–737.Google Scholar
  87. 87.
    Tsutsumi K, Vishwanathan M, Strömberg C and Saavedra JM. Type 1 and type 2 angiotensin II receptors in fetal rat brain. Europ J Pharmacol 1991; 198: 89–92.Google Scholar
  88. 88.
    Tsutsumi K and Saavedra JM. Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol 1991; 261:R209–R216.PubMedGoogle Scholar
  89. 89.
    Kawahara Y, Sunako M, Tsuda T, Fukuzaki H, Fukumoto Y and Takai Y Angiotensin II induces expression of the c-fos gene through protein kinase C activation and calcium ion mobilization in cultured vascular smooth muscle cells. Biochem Biophys Res Comm 1988; 150: 52–59.PubMedGoogle Scholar
  90. 90.
    Lang U and Valloton MB. Angiotensin II but not potassium induces subcellular redistribution of protein kinase C in bovine adrenal glomerulosa cells. J Biol Chem 1987; 262: 8047–8050.PubMedGoogle Scholar
  91. 91.
    Stachowiak MK, Jiang HK, Poisner AM, Tuominen RK and Hong JS. Short and long term regulation of catecholamine biosynthetic enzymes by angiotensin cultured bovine medullary cells. Molecular mechanisms and nature of second messenger systems. J Biol Chem 1990; 265: 4694–4702.Google Scholar
  92. 92.
    Stachowiak MK, Sar M, Tuominen RK, Jiang HK, An S, Iadarola MJ, Poisner AM and Hong S. Stimulation of adrenal medullary cells in vivo and in vitro induces expression of c-fos protooncogene. Oncogene 1990; 5: 69–73.PubMedGoogle Scholar
  93. 93.
    Goc A and Stachowiak MK. Bovine tyrosine hydroxylase gene-promotor regions involved in basal and angiotensin II-stimulated expression in non-transformed adrenal medullary cells. J Neurochem 1994; 62: 834–843.PubMedGoogle Scholar
  94. 94.
    Sumners C, Phillips MI and Raizada MK. Angiotensin II stimulates changes in the norepinephrine content of primary cultures of rat brain. Neuroscience Lett 1983; 36: 305–309.Google Scholar
  95. 95.
    Sumners C and Raizada MK. Angiotensin II stimulates norepinephrine uptake in hypothalamus-brainstem neuronal cultures. Am J Physiol 1986; 250:C236–C244.PubMedGoogle Scholar
  96. 96.
    Sumners C, Shalit SL, Kalberg CJ and Raizada MK. Norepinephrine metabolism in neuronal cultures is increased by angiotensin II. Am J Physiol 1987; 252:C650–C656.PubMedGoogle Scholar
  97. 97.
    Hermann K, Raizada MK, Sumners C and Phillips MI. Immunocytochemical and biochemical characterization of angiotensin I and II in cultured neuronal and glial cells from rat brain. Neuroendocrinol 1988; 47: 125–132.Google Scholar
  98. 98.
    Raizada MK and Sumners C. Unpublished observations.Google Scholar
  99. 99.
    Sumners C, Muther TF and Raizada MK. Altered norepinephrine uptake in neuronal cultures from spontaneously hypertensive rat brain. Am J Physiol 1985; 248:C488–C497.PubMedGoogle Scholar
  100. 100.
    Feldstein JB, Pacitti AJ, Sumners C and Raizada MK. α1adrenergic receptors in neuronal cultures from the brain: Increased expression in hypertensive rat. J Neurochem 1986; 47: 1190–1198.PubMedGoogle Scholar
  101. 101.
    Bottiglieri DF, Morse CA, Baker SP, Crews FT, Sumners C and Raizada MK. Increased expression of α1-adrenergic receptors in hypothalamus of spontaneously hypertensive rat brain. Brain Research 1988; 439: 187–194.PubMedGoogle Scholar
  102. 102.
    Wozniak M, Ph.D. Dissertation: Differential Regulation of α1A and α1B Adrenergic Receptors in Neuronal and Astroglia Cultures, University of Florida, 1993.Google Scholar
  103. 103.
    Raizada, MK, Muther TF and Sumners C. Increased angiotensin II specific receptors in neuronal cultures from spontaneously hypertensive rat brain. Am J Physiol 1985; 248:C488–C497.PubMedGoogle Scholar
  104. 104.
    Sumners C, Richards EM, Tang W and Raizada MK. Angiotensin II type 2 receptor expression in neuronal cultures in spontaneously hypertensive rat brain. Reg Peptides 1993; 44: 181–188.Google Scholar
  105. 105.
    Inagami T, Iwai N, Sasaki K, Yamano Y, Bardhan S, Chaki S, Auo D-F and Furuta H. Cloning, expression and regulation of angiotensin II receptors. In: Cellular and Molecular Biology of the Renin-Angiotensin System, eds. Raizada MK, Phillips MI and Sumners C, CRC Press, Boca Raton, FL 1993:273–306.Google Scholar
  106. 106.
    Sandberg K. Structural analysis and regulation of angiotensin II receptors. TEM 1994; 5: 28–35.PubMedGoogle Scholar
  107. 107.
    Lu D, Sumners C and Raizada MK. Regulation of angiotensin II type 1 receptor mRNA in neuronal cultures of normotensive and only hypertensive rat brain by phorbol esters and forskolin. J Neurochem 1994; 62: 2079–2084.PubMedGoogle Scholar
  108. 108.
    Sumners C and Fregly MJ. Modulation of angiotensin II binding sites in neuronal cultures by mineralocorticoids. Am J Physiol 1989; 256:C121–C129.PubMedGoogle Scholar
  109. 109.
    Kang J, Sumners C and Posner P. Modulation of net outward current in cultured neurons by angiotensin II: Involvement of AT1 and AT2 receptors. Brain Res 1992; 580: 317–324.PubMedGoogle Scholar
  110. 110.
    Myers LM and Sumners C. Regulation of angiotensin II binding sites in neuronal cultures bycatecholamines. Am J Physiol 1989; 257:C706–C713.PubMedGoogle Scholar
  111. 111.
    Puig JF, Pacitti AJ, Guzman NJ, Crews FT, Sumners C and Raizada MK. α1-Adrenergic receptors in the brian: Characterization in glial cultures and comparison with neuronal cultures. Brain Res 1990; 527: 318–325.PubMedGoogle Scholar
  112. 112.
    Raizada MK, Phillips MI, Crews FT and Sumners C. Distinct angiotensin II receptor in primary cultures of glial cells from the rat brain. Proc Nat’l Acad Sci USA 1987; 84: 4655–4659.Google Scholar
  113. 113.
    Rydzewski B, Zelezna B, Tang W, Sumners C and Raizada MK. Angiotensin II stimulation of phasminogen activator inhibitor-1 gene expression in astroglial cells from the brain. Endocrinol 1992; 130: 1255–62.Google Scholar
  114. 114.
    Raizada MK and Sumners C. Lack of α1-adrenergic receptor mediated down regulation of Angiotensin II receptors in neuronal cultures of spontaneously hypertensive rat brain. Mol Cell Biochem 1989; 91: 111–115.PubMedGoogle Scholar
  115. 115.
    Feldstein JB, Pacitti AJ, Sumners C and Raizada MK. α1-adrenergic receptors in neuronal cultures from rat brain: increased expression in spontaneously hypertensive rat. J Neurochem 1986; 47: 1190–1198.PubMedGoogle Scholar
  116. 116.
    Steckeling V, Bottanis P and Unger T. Angiotensin II receptor subtype in the brain. TIPS 1992; 13: 365–368.Google Scholar
  117. 117.
    Steckelings V, Lebrun C, Qadri F, Veltman A and Unger T. Role of brain angiotensin in cardiovascular regulation. J Cardiovasc Pharmacol 1992; 19 (Suppl. 6):S73–S79.Google Scholar
  118. 118.
    Sumners C, Phillips MI and Raizada MK. Angiotensin stimulates changes in norepinephrine content in primary cultures of rat brain. Neurosci Lett 1983; 36: 305–309.PubMedGoogle Scholar
  119. 119.
    Sumners C and Raizada MK. Angiotensin II stimulates norepinephrine uptake in hypothalamus-brainstem neuronal cultures. Am J Physiol 1986; 250:C236–C244.PubMedGoogle Scholar
  120. 120.
    Maclean MR, Raizada MK and Sumners C. The influence of angiotensin II on catecholamine synthesis in neuronal cutlures of rat brain. Biochem Biophys Res Commun 1990; 167: 492–497.PubMedGoogle Scholar
  121. 121.
    Sumners C, Rueth SM, Myers LM, Crews FT and Raizada MK. Phorbol ester-induced upregulation of angiotensin II receptors in neuronal cultures is potentiated by a calcium ionophore. J Neurochem 1988; 51(1):153–162.PubMedGoogle Scholar
  122. 122.
    Myers LM, Raizada MK and Sumners C. Effects of phorbol esters and A23187 on angiotensin II binding in synaptosomes from rat hypothalamus and brain stem. Neurochem Res 1989; 14: 25–30.PubMedGoogle Scholar
  123. 123.
    Sumners C. Norepinephrine increases angiotensin II binding in rat brain synaptosomes. Brain Res Bull 1992; 28: 411–415.PubMedGoogle Scholar
  124. 124.
    Wilson KM, Sumners C, Hathaway S and Fregly MJ. Mineralocorticoids modulate central angiotensin II receptors in rats. Brain Res 1986; 382: 87–96.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mohan K. Raizada
    • 1
  • Di Lu
    • 1
  • Colin Sumners
    • 1
  1. 1.Department of PhysiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations