The Relationship between the Adrenal Tissue Renin-Angiotensin System, Internalization of the Type I Angiotensin II Receptor (AT1) and Angiotensin II Function in the Rat Adrenal Zona Glomerulosa Cell

  • G. P. Vinson
  • M. M. Ho
  • J. R. Puddefoot
  • R. Teja
  • S. Barker
  • S. Kapas
  • J. P. Hinson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 377)


Many data suggest that the elements of the tissue renin-angiotensin system (RAS) in the adrenal cortex are mostly located in the zona glomerulosa. The relationship of this paracrine/autocrine system with the cellular localization of the angiotensin II (AII) receptor has not been clarified.

Using a specific monoclonal antibody (6313/G2) to the first extracellular domain of the type 1 receptor (AT1), we show here that most of the receptor is internalized in the rat glomerulosa cell. This may result from tonic stimulation by the tissue RAS, and consequent permanent receptor occupancy. When viable glomerulosa cells are incubated with 6313/G2, the receptor is transiently concentrated on the cell surface, and aldosterone output is stimulated. This stimulated output is enhanced by neither threshold nor maximal stimulatory concentrations of AII amide, although the antibody does not inhibit AII binding to the receptor. The antibody directly stimulates inositol trisphosphate (IP3) generation, but, while having no intrinsic action on protein kinase C (PKC) activation, significantly inhibits the PKC response to angiotensin II.

The data suggest that although the receptor is mostly internalized, recycling to the plasma membrane is constitutive, or regulated by unknown factors. Retention of the AT1 receptor in the membrane is alone enough to allow sufficient G protein interaction to generate maximal steroidogenic effects, through IP3 generation. PKC activation induced by angiotensin II has no bearing on steroidogenesis in the dispersed glomerulosa cell system.


Zona Glomerulosa Aldosterone Secretion Inositol Trisphosphate Dietary Sodium Restriction Adrenal Glomerulosa Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilera G, Hauger RL and Catt KJ. Control of aldosterone secretion during sodium restriction: adrenal receptor regulation and increased adrenal sensitivity. Proc.Soc.Natl.Acad.Sci., US 1978; 75: 975–979.CrossRefGoogle Scholar
  2. Aguilera G, Menard RH and Catt KJ. Regulatory actions of angiotensin II on receptors ad steroidogenic enzymes in adrenal glomerulosa cells. Endocrinology 1980; 107: 55–60.PubMedCrossRefGoogle Scholar
  3. Aguilera G and Catt KJ. Regulation of aldosterone secretion during altered sodium intake. J. Steroid Biochem. 1983; 19: 525–530.PubMedCrossRefGoogle Scholar
  4. Ambroz C and Catt KJ. Angiotensin II receptor-mediated calcium influx in bovine adrenal glomerulosa cells. Endocrinology 1992; 131: 408–414.PubMedCrossRefGoogle Scholar
  5. Barker S, Marchant W, Ho MM, et al. A monoclonal antibody to a conserved sequence in the extracellular domain recognizes the angiotensin II AT1 receptor in mammalian tissues. J.mol.endocr. 1993; 11: 241–245.CrossRefGoogle Scholar
  6. Berridge MJ. Inositol trisphosphate and calcium signalling. Nature. 1993; 361: 315–325.PubMedCrossRefGoogle Scholar
  7. Bianchi C, Gutowska J, De Lean A, et al. Fate of [125I]angiotensin II in adrenal zona glomerulosa cells. Endocrinology 1986; 118: 2605–2607.PubMedCrossRefGoogle Scholar
  8. Booz GW, Conrad KM, Hess AL, Singer HA and Baker KM. Angiotensin-II-binding sites on hepatocyte nuclei. Endocrinology 1992; 130: 3641–3649.PubMedCrossRefGoogle Scholar
  9. Brecher AS, Shier DN, Dene H, et al. Regulation of adrenal renin messenger ribonucleic acid by dietary sodium chloride. Endocrinology 1989; 124: 2907–2913.PubMedCrossRefGoogle Scholar
  10. Catt KJ, Balla T, Baukal AJ, Hausdorff WP and Aguilera G. Control of glomerulosa cell function by angiotensin. Clin.Exp.Pharmacol.Physiol. 1988; 15: 501–515.PubMedCrossRefGoogle Scholar
  11. Crozat A, Penhoat A and Saez JM. Processing of angiotensin II (AII) and Sarl, Ala8)A-II by cultured bovine adrenocortical cells. Endocrinology 1986; 118: 2312–2318.PubMedCrossRefGoogle Scholar
  12. Desarnaud F, Marie J, Lombard C, et al. Deglycosylation and fragmentation of purified rat liver angiotensin II receptor: application to the mapping of hormone-binding domains. Biochem. J. 1993; 289: 289–297.PubMedGoogle Scholar
  13. Deschepper CF, Mellon SH, Cumin F, Baxter JD and Ganong WF. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc.Natl.Acad.Sci., USA 1986; 83: 7552–7556.PubMedCrossRefGoogle Scholar
  14. Doi Y, Atarashi K, Franco-Saenz R and Mulrow PJ. Adrenal renin: a possible regulator of aldosterone production. Clin.Expt.Hypertens. 1983; [A] 5: 1119–1126.CrossRefGoogle Scholar
  15. Douglas J, Aguilera G, Kondo T and Catt K. Angiotensin II receptors and aldosterone production in rat adrenal glomerulosa cells. Endocrinology 1978; 102: 685–696.PubMedCrossRefGoogle Scholar
  16. Downes CP and Michell RH. The polyphosphoinositide phosphodiesterase of erythrocyte membranes. Biochem.J. 1981; 198: 133–140.PubMedGoogle Scholar
  17. Enyedi P and Spät A. Effect of reduced extracellular sodium concentration on the function of adrenal zona glomerulosa: studies on isolated glomerulosa cells from the rat. J.Endocrinol. 1981; 89: 417–421.PubMedCrossRefGoogle Scholar
  18. Enyedi P, Buki B, Mucsi I and Spät A. Polyphosphoinositide metabolism in adrenal glomerulosa cells. Mol.Cell Endocrinol. 1985a; 41: 105–112.PubMedCrossRefGoogle Scholar
  19. Enyedi P, Buki B, Muscsi I and Spät A. Polyphosphoinositide metabolism in adrenal glomerulosa cells. Mol.Cell Endocrinol. 1985b; 41: 105–112.PubMedCrossRefGoogle Scholar
  20. Gross F, Brunner H and Ziegler M. Renin-angiotensin system, aldosterone and sodium balance. Recent Progr.Hormone Res. 1965; 21: 119–177.PubMedGoogle Scholar
  21. Gupta P, Francosaenz R and Mulrow PJ. Regulation of the adrenal renin-angiotensin system in cultured bovine zona glomerulosa cells — effect of catecholamines. Endocrinology 1992; 130: 2129–2134.PubMedCrossRefGoogle Scholar
  22. Hunyady L, Balla T, Nagy K and Spät A. Control of phosphatidylinositol turnover in adrenal glomerulosa cells. Biochim.Biophys.Acta 1982; 713: 352–357.PubMedCrossRefGoogle Scholar
  23. Hunyady L, Merelli F, Baukal AJ, Balla T and Catt KJ. Agonist-induced endocytosis and signal generation in adrenal glomerulosa cells. A potential mechanism for receptor-operated calcium entry. J.Biol.Chem. 1991; 266: 2783–2788.Google Scholar
  24. Kapas S, Orford CD, Barker S, Vinson GP and Hinson JP. Studies on the intracellular mechanism of action of alpha-melanocyte-stimulating hormone on rat adrenal zona glomerulosa. J.Mol.Endocrinol. 1992; 9: 47–54.PubMedCrossRefGoogle Scholar
  25. Kifor I, Moore TJ, Fallo F, et al. The effect of sodium-intake on angiotensin content of the rat adrenal-gland. Endocrinology 1991; 128: 1277–1284.PubMedCrossRefGoogle Scholar
  26. Kojima I, Kojima K, Kreutter D and Rasmussen H. The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways. J.Biol.Chem. 1984; 259: 14448–14457.PubMedGoogle Scholar
  27. Kramer RE. Angiotensin II-stimulated changes in calcium metabolism in cultured glomerulosa cells. Mol.Cell Endocrinol. 1988; 60: 199–210.PubMedCrossRefGoogle Scholar
  28. Laird SM, Vinson GP and Whitehouse BJ. Monoclonal-antibodies against rat adrenocortical cell antigens. Acta Endocrinologica 1988; 119: 420–426.PubMedGoogle Scholar
  29. Lowry OH, Rosebrough NJ, Farr AL and Randall RJ. Protein measurement with Folin-phenol reagent. J.Biol.Chem. 1951; 193: 265–275. 30.PubMedGoogle Scholar
  30. Müller, J. Regulation of aldosterone biosynthesis, Springer-Verlag, Berlin: 1988.Google Scholar
  31. Mulrow PJ. Adrenal renin: regulation and function. Front.Neuroendocr. 1992; 13: 47–60.Google Scholar
  32. Nakamaru M, Misono KS, Naruse M, Workman RJ and Inagami T. A role for the adrenal renin-angiotensin system in the regulation of potassium-stimulated aldosterone production. Endocrinology 1985; 117: 1772–1778.PubMedCrossRefGoogle Scholar
  33. Nakano S, Carvallo P, Rocco S and Aguilera G. Role of protein kinase C on the steroidogenic effect of angiotensin II in the rat adrenal glomerulosa cell. Endocrinology 1990; 126: 125–133.PubMedCrossRefGoogle Scholar
  34. Ouali R, Poulette S, Penhoat A and Saez JM. Characterisation and coupling of angiotensin-II receptor subtypes in cultured bovine adrenal fasciculata cells. J.Steroid Biochem. 1992; 43: 271–280.CrossRefGoogle Scholar
  35. Peach MT. Renin-angiotensin system: biochemistry and mechanism of action. Physiol.Rev. 1977; 57: 313–370.PubMedGoogle Scholar
  36. Persaud S, Sugden D, Jones PM and Howell S. Translocation of protein kinase C in rat islets of Langerhans. FEBS letters 1989; 245: 80–84.PubMedCrossRefGoogle Scholar
  37. Quinn SJ, Enyedi P, Tillotson DL and Williams GH. Cytosolic calcium and aldosterone response patterns of rat adrenal glomerulosa cells stimulated by vasopressin: comparison with angiotensin II. Endocrinology 1990; 127: 541–548.PubMedCrossRefGoogle Scholar
  38. Ryan JW. Renin-like enzyme in the adrenal gland. Science 1967; 158: 1589–1590.PubMedCrossRefGoogle Scholar
  39. Sarzani R, Fallo F, Dessi-Fulgheri P, et al. Local renin-angiotensin system in human adrenals and aldosteronomas. Hypertension 1992; 19: 702–706.PubMedCrossRefGoogle Scholar
  40. Schelling JR, Hanson AS, Marzec R and Linas SL. Cytoskeleton-dependent endocytosis is required for apical type 1 angiotensin II receptor-mediated phospholipase C activation in cultured rat proximal tubule cells. J.clin.Invest. 1992; 90: 2472–2480.PubMedCrossRefGoogle Scholar
  41. Shier DN, Kusano E, Stoner GD, Francosaenz R and Mulrow PJ. Production of renin, angiotensin-II, and aldosterone by adrenal explant cultures — response to potassium and converting enzyme-inhibition. Endocrinology 1989; 125: 486–491.PubMedCrossRefGoogle Scholar
  42. Spät A. Stimulus-secretion coupling in angiotensin-stimulated adrenal glomerulosa cells. J.Steroid.Biochem. 1988; 29: 443–453.PubMedCrossRefGoogle Scholar
  43. Tang S-S, Rogg H, Schumacher R and Dzau VJ. Characterization of nuclear angiotensin-II-binding sites in rat liver and comparison with plasma membrane receptors. Endocrinology 1992; 131: 374–380.PubMedCrossRefGoogle Scholar
  44. Ullian ME and Linas SL. Role of receptor cycling in the regulation of anbgiotensin II surface receptor number and angiotensin II uptake in rat vascular smooth muscle cells. J.clin.Invest. 1989; 84: 840–846.PubMedCrossRefGoogle Scholar
  45. Urata H, Khosla MC, Bumpus FM and Husain A. Evidence for extracellular, but not intracellular, generation of angiotensin II in the rat adrenal zona glomerulosa. Proc.Natl.Acad.Sci.U.S.A. 1988; 85: 8251–8255.PubMedCrossRefGoogle Scholar
  46. Vinson GP, Laird SM, Whitehouse BJ and Hinson JP. Specific effects of agonists of the calcium messenger system on secretion of late-pathway steroid products by intact tissue and dispersed cells of the rat adrenal zona glomerulosa. Journal Of Molecular Endocrinology 1989a; 2: 157–165.PubMedCrossRefGoogle Scholar
  47. Vinson GP, Laird SM, Whitehouse BJ and Hinson JP. Specific effects of agonists of the calcium messenger system on secretion of ‘ate-pathway’ steroid products by intact tissue and dispersed cells of the rat adrenal zona glomerulosa. J.Mol.Endocrinol. 1989b; 2: 157–165.PubMedCrossRefGoogle Scholar
  48. Vinson GP, Laird SM, Hinson JP, Mallick N, Marsigliante S and Teja R. Trypsin stimulation of aldosterone and 18-hydroxycorticosterone production by rat adrenal zona glomerulosa tissue is mediated by activation of protein kinase C. J.mol.endocr. 1990; 5: 85–93.CrossRefGoogle Scholar
  49. Woodcock EA, Smith AI and White LB. Angiotensin II-stimulated phosphatidylinositol turnover in rat adrenal glomerulosa cells has a complex dependence on calcium. Endocrinology 1988; 122: 1053–1059.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • G. P. Vinson
    • 1
  • M. M. Ho
    • 1
  • J. R. Puddefoot
    • 1
  • R. Teja
    • 1
  • S. Barker
    • 1
  • S. Kapas
    • 1
  • J. P. Hinson
    • 1
  1. 1.Department of BiochemistryQueen Mary and Westfield CollegeLondonUK

Personalised recommendations