Advertisement

The Mammalian Pineal Gland and Reproduction

Controversies and Strategies for Future Research
  • James Olcese
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 377)

Summary

Evidence for a role of the pineal gland and its major hormonal product, melatonin, in mammalian reproduction has accumulated for over three decades. In sorting through the masses of data pertaining to this issue, certain facts are becoming established. For example, the pineal gland is clearly involved in seasonal reproductive cycles via transduction of daylength (more properly nightlength) information in the form of plasma melatonin rhythms. Specific melatonin receptors are found in the hypothalamus and pituitary pars tuberalis of most of the mammalian species examined thus far. Melatonin’s mode of action on the reproductive axis is quite variable but may, in many cases, involve modulation of gonadotropin-releasing hormone secretion from the median eminence. Clinical evidence continues to support the idea that melatonin may play a role in the timing of puberty.

Keywords

Pineal Gland Syrian Hamster Median Eminence Suprachiasmatic Nucleus Melatonin Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aloyo VJ. Proenkephalin A gene expression in rat pineal. Neuroendocrinology 1991; 54: 594–598.PubMedCrossRefGoogle Scholar
  2. Arendt J. Role of the pineal gland and melatonin in seasonal reproductive function in mammals. Oxford Rev. Reprod. Biol. 1986; 8: 266–320.Google Scholar
  3. Arendt J, Labib MH, Bojkowski C, Hanson S, Marks V. Rapid decrease in melatonin production during successful treatment of delayed puberty. Lancet 1989; i: 1326.CrossRefGoogle Scholar
  4. Armstrong SM. Melatonin and circadian control in mammals. Experientia 1989; 45: 932–938.PubMedCrossRefGoogle Scholar
  5. Aubert ML, Rivest RW, Lang U, Sizonenko PC. Role of photoperiod and melatonin in sexual maturation of the rat. Res. Perinatal Med. 1989; 9: 155–191.Google Scholar
  6. Bartness TJ, Goldman BD. Mammalian pineal melatonin: A clock for all seasons. Experientia 1989; 45: 939–945.PubMedCrossRefGoogle Scholar
  7. Badawi H, Wilkinson M. Lack of effect of melatonin on sexual maturation in female rats. J. Reprod. Fertil. 1988; 83: 273–278.PubMedCrossRefGoogle Scholar
  8. Baratta M, Tamanini C. Effect of melatonin on the in vitro secretion of progesterone and estradiol 17β by ovine granulosa cells. Acta Endocr. 1992; 127: 366–370.PubMedGoogle Scholar
  9. Benson B, Ebels I. Structure of a pineal gland-derived antigonadotropic decapeptide. Life Sci. 1994; 54: PL 437–443.CrossRefGoogle Scholar
  10. Berga SL, Mortola JF, Yen SSC. Amplification of nocturnal melatonin secretion in women with functional hypothalamic amenorrhea. J. Clin. Endocr. Metab. 1988; 66: 242–244.PubMedCrossRefGoogle Scholar
  11. Bittman EL. The role of rhythms in the response to melatonin. In: Photoperiodism, melatonin and the pineal. Pitman, London, 1985: 149-69.Google Scholar
  12. Blask DE, Hill SM, Pelletier DB. Oncostatic signalling by the pineal gland and melatonin in the control of breast cancer. In: Gupta D, Attanasio A, Reiter RJ, eds. The Pineal Gland and Cancer. Brain Research Promotion, London, 1988: 195–206.Google Scholar
  13. Brzezinski A., Lynch HJ, Seibel MM, Deng MH, Nader TM, Wurtman RJ. The circadian rhythm of plasma melatonin during the normal menstrual cycle and in amenorrheic women. J. Clin. Endocr. Metab. 1988; 66: 891–895.PubMedCrossRefGoogle Scholar
  14. Brzezinski A, Schenker JG, Fibich T, Laufer N, Cohen M. Effects of melatonin on progesterone production by human granulosa lutein cells in culture. Fert. Steril. 1992; 58: 526–529.Google Scholar
  15. Cagnacci A, Elliot JA, Yen SSC. Amplification of pulsatile LH secretion by exogenous melatonin in humans. J. Clin. Endocr. Metab. 1991; 73: 210–212.PubMedCrossRefGoogle Scholar
  16. Cassone VM. Melatonin and suprachiasmatic nucleus function. In: Klein DC, Moore RY and Reppert SM, eds.Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, Oxford, 1991: 309–323.Google Scholar
  17. Changaris DG, Keil LC, Severs WB. Angiotensin II immuno-histochemistry of the rat brain. Neuroendocrinology 1978; 25: 257–274.PubMedCrossRefGoogle Scholar
  18. Chevillad C, Saavedra JM. Distribution of angiotensin-converting enzyme activity in specific areas of the rat brain stem. J. Neurochem. 1982; 38: 281–284.CrossRefGoogle Scholar
  19. Ebadi M, Hexum TD, Pfeiffer RF, Govitrapong P. Pineal and retinal peptides and their receptors. Pineal Res. Rev. 1989; 7: 1–156.CrossRefGoogle Scholar
  20. Ebisawa T, Karne S, Lerner MR, Reppert SM. Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proc. Natl. Acad. Sci. USA 1994; 91: 6133–6137.PubMedCrossRefGoogle Scholar
  21. Finocchiaro LME, Goldstein DJ, Finkielman S, Nahmod VE. Interaction of angiotensin II with the cholinergic and noradrenergic systems in the rat pineal gland: regulation of indole metabolism. J. Endocr. 1989; 126: 59–66.CrossRefGoogle Scholar
  22. Gauer F, Masson-Pevet M, Pevet P. Pinealectomy and constant illumination increase the density of melatonin binding sites in the pars tuberalis of rodents. Brain Res. 1992; 575: 32–38.PubMedCrossRefGoogle Scholar
  23. Hirose S, Yokosawa H, Inogami T, Workman RJ. Renin and prorenin in hog brain: Ubiquitous distribution and high concentration in the pituitary and pineal. Brain Res. 1980; 191: 489–499.PubMedCrossRefGoogle Scholar
  24. Hoffman RA, Reiter RJ. Pineal gland: influence on gonads of male hamsters. Science 1965; 148: 1609.PubMedCrossRefGoogle Scholar
  25. Hong SM, Stetson MH. Detailed diurnal rhythm of sensitivity to melatonin injections in Turkish hamsters, Mesocricetus brandti. J. Pineal Res. 1987; 4: 69–78.PubMedCrossRefGoogle Scholar
  26. Kano T, Miyachi Y Direct action of melatonin on testosterone and cyclic GMP production using rat testis tissue in vitro. Biochem. Biophys. Res. Commun. 1976; 72: 969–975.PubMedCrossRefGoogle Scholar
  27. Kao LWL, Weisz J. Release of gonadotropin-releasing hormone (Gn-RH) from isolated, perifused medial-basal hypothalamus by melatonin. Endocr. 1977; 100: 1723–1726.CrossRefGoogle Scholar
  28. Kappers JA. Melatonin, a pineal compound. Preliminary investigations on its function in the rat. Gen Comp. Endocrin. 1962; 2: 610–611.Google Scholar
  29. Kauppila A, Kivela A, Pakarinen A, Vakkuri O. Inverse seasonal relationship between melatonin and ovarian activity in humans in a region with a strong seasonal contrast in luminosity. J. Clin. Endocr. Metab. 1987; 65: 823–828.PubMedCrossRefGoogle Scholar
  30. Kitay JI. Pineal lesions and precocious puberty: a review. J. Clin. Endocrin. Metab. 1954; 14: 622–625.CrossRefGoogle Scholar
  31. Klein DC, Schaad NL, Namboordiri MAA, Yu L, Weiler JL. Regulation of pineal serotonin N-acetyltransferase activity. Biochem. Soc. Trans. 1992; 20: 299–304.PubMedGoogle Scholar
  32. Korf H-W. The pineal organ as a component of the biological clock. Ann. N.Y Acad. Sci. 1994; 719: 13–42.PubMedCrossRefGoogle Scholar
  33. Lang U. Melatonin and puberty. Pineal Res. Rev. 1986; 4: 199–243.Google Scholar
  34. Lerner AB, Case JD, Takahashi Y, Lee Y, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Amer. Chem. Soc. 1958; 80: 2587.CrossRefGoogle Scholar
  35. Levine RJ, Matthew RM, Chenault CB, Brown MH, Hurtt ME, Bentley KS, Mohr KL, Working PK. Differences in the quality of semen in outdoor workers during summer and winter. New Engl. J. Med. 1990; 323: 12–16.PubMedCrossRefGoogle Scholar
  36. Lincoln GA, Lire EA, Merriam GR. Long-term reproductive cycles in rams after pinealectomy or superior cervical gangionectomy. J. Reprod. Fert. 1989; 85: 687–704.CrossRefGoogle Scholar
  37. Liu B, Poulters C, Neacsu C, Burbach JPH. Isolation and identification of vasopressin-and oxytocin-immunoreactive substances from bovine pineal gland. J. Biol. Chem. 1988; 263: 72–75.PubMedGoogle Scholar
  38. Lolly RN, Craft CM, Lee RH. Photoreceptors of the retina and pinealocytes of the pineal gland share common components of signal transduction. Neurochem. Res. 1992; 17: 81–89.CrossRefGoogle Scholar
  39. Lopes MBS, Gonzalez-Fernandez F, Scheithauer BW, Vandenberg SR. Differential expression of retinal proteins in a pineal parenchymal tumor. J. Neuropath. Exptl. Neurol. 1993; 52: 516–524.CrossRefGoogle Scholar
  40. Mauri R, Lissoni P, Resentini M, De Medici C, Morabito F, Djemal S, Di Bella L, Fraschini F. Effects of melatonin on PRL secretion during different photoperiods of the day in prepubertal and pubertal healthy subjects. J. Endocr. Invest. 1985; 8: 337–341.PubMedGoogle Scholar
  41. McKinley MJ, McAllen RM, Mendelsohn FAO, Allen AM, Chai SY, Oldfield BJ. Circumventricular organs: Neuroendocrine interfaces between the brain and the hemal milieu. Front. Neuroendocr. 1990; 11: 91–127.Google Scholar
  42. Mehdi AZ, Sandor T. The effect of melatonin on the biosynthesis of corticosteroids in beef adrenal preparations in vitro. J. Steroid Biochem. 1977; 8: 821–823.PubMedCrossRefGoogle Scholar
  43. Moller M, Mikkelsen JD, Phansuwan-Pujito P. Demonstration of nerve fibers immunoreactive to metenkephalin, leu-enkephalin, and β-endorphin in the bovine pineal gland. In: Fraschini F, RJ Reiter, eds. Role of Melatonin and Pineal Peptides in Neuroimmunomodulation. Plenum Press, New York, 1991: 15–25.CrossRefGoogle Scholar
  44. Moore RY, Siboney P. Enkephalin-like immunoreactivity in neurons in the human pineal gland. Brain Res. 1988; 457: 395–398.PubMedCrossRefGoogle Scholar
  45. Moore RY. The suprachiasmatic nucleus and the circadian timing system. In: Klein DC, Moore RY, Reppert SM, eds. Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, Oxford, 1991: 13–15.Google Scholar
  46. Morgan PJ, Davidson G, Lawson W, Barrett P. Both pertussis toxin-sensitive and insensitive G-proteins link melatonin receptors to inhibition of adenylate cyclase in the ovine pars tuberalis. J. Neuroendocr. 1990; 2: 773–776.CrossRefGoogle Scholar
  47. Morgan PJ, King TP, Lawson W, Slater D, Davidson G. Ultrastructure of melatonin-responsive cells in the ovine pars tuberalis. Cell Tiss. Res. 1991; 263: 529–534.CrossRefGoogle Scholar
  48. Nakazawa K, Marubayashi U. McCann SM. Mediation of the short-loop negative feedback of luteinizing homone (LH) on LH-releasing hormone release by melatonin-induced inhibition of LH release from the pars tuberalis. Proc. Natl. Acad. Sci. USA 1991; 88: 7576–7579.PubMedCrossRefGoogle Scholar
  49. Ogle TF, Kitay JI. In vitro effects of melatonin and serotonin on adrenal steroidogenesis. Proc. Soc. Exptl. Biol. Med. 1978; 157: 103–105.CrossRefGoogle Scholar
  50. Olcese J, Sinemus C, Ivell R. Vasopressinergic innervation of the bovine pineal gland: Is there a local source for arginine vasopressin? Mol. Cell. Neurosci. 1993; 4: 47–54.PubMedCrossRefGoogle Scholar
  51. Pelletier J, Castro B, Roblot G, Wylde R, de Reviers M-M. Characterization of melatonin receptors in the ram pars tuberalis: influence of light. Acta Endocrin. 1990; 123: 557–562.Google Scholar
  52. Pernow J, Lundberg JM. Modulation of noradrenaline and neuropeptide Y (NPY) release in the pig kidney in vivo: involvement of alpha-2, NPY and angiotensin II receptors. Naunyn Schmiedeberg’s Arch.Pharmacol. 1989; 340: 379–385.CrossRefGoogle Scholar
  53. Persengiev S, Kehajova J. Inhibitory action of melatonin and structurally related compounds on testosterone production by mouse Leydig cells in vitro. Cell. Biochem. Function 1991; 9: 281–286.CrossRefGoogle Scholar
  54. Persengiev SP. 2-(125I)iodomelatonin binding sites in rat adrenals: Pharmacological characteristics and subcellular distribution. Life Sci. 1992; 51: 647–651.PubMedCrossRefGoogle Scholar
  55. Petterborg LJ, Thalen BE, Kjellman BF, Wetterberg L. Effect of melatonin replacement on serum hormone rhythms in a patient lacking endogenous melatonin. Brain Res. Bull. 1991; 27: 181–185.PubMedCrossRefGoogle Scholar
  56. Pierrefiche G, Topall G, Courboin G, Henriet I, Laborit H. Antioxidant activity of melatonin in mice. Res. Comm. Chem. Pathol. Pharmacol. 1993; 80: 211–223.Google Scholar
  57. Poeggeler B, Reiter RJ, Tan D-X, Chen L-D, Manchester LC. Melatonin, hydroxyl radical-mediated oxidative damage, and aging: A hypothesis. J. Pineal. Res. 1993; 14: 151–168.PubMedCrossRefGoogle Scholar
  58. Preslock JR The pineal gland: Basic implications and clinical correlations. Endocr. Rev. 1984; 5: 282–308.PubMedCrossRefGoogle Scholar
  59. Puig-Domingo M, Webb SM, Serrano J, Peinado M-A., Corcoy R, Ruscalleda J, Reiter RJ, de Leiva A. Melatonin-related hypogonadotropic hypogonadism. New Engl. J. Med. 1992; 327: 1356–1359.PubMedCrossRefGoogle Scholar
  60. Rasmussen DD. Direct modulation of rat hypothalamic gonadotropin-releasing hormone release by melatonin in vitro. J. Endocrin. Invest. 1993; 16: 1–7.Google Scholar
  61. Reiter RJ. The pineal and its hormones in the control of reproduction in mammals. Endocr. Rev. 1980; 1: 109–131.PubMedCrossRefGoogle Scholar
  62. Reiter RJ. Pineal melatonin: Cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 1991; 12: 151–180.PubMedCrossRefGoogle Scholar
  63. Reiter RJ. The melatonin rhythm: both a clock and a calendar. Experientia 1993; 49: 654–664.PubMedCrossRefGoogle Scholar
  64. Richardson SB, Prasad JA, Hollander CS. Acetylcholine, melatonin, and potassium depolarization stimulate release of luteinizing hormone-releasing hormone from rat hypothalamus in vitro. Proc. Natl. Acad. Sci. USA 1982; 79: 2686–2689.PubMedCrossRefGoogle Scholar
  65. Sack RL, Lewy AJ. Human circadian rhythms: Lessons from the blind. Ann. Med. 1993; 25: 303–305.PubMedCrossRefGoogle Scholar
  66. Sanchez-Barcelo EJ, Mediavilla MD, Tucker HA. Influence of melatonin on mammary gland growth: In vivo and in vitro studies. Proc. Soc. Expt. Biol. Med. 1990; 194: 103–107.CrossRefGoogle Scholar
  67. Smals AGH, Kloppenborg PWC, Benraad TJ. Circannual cycle in plasma testosterone levels in man. J. Clin. Endocr. Metab. 1976; 42: 979–982.PubMedCrossRefGoogle Scholar
  68. Stankov B and Reiter RJ. Melatonin receptors: Current status, facts, and hypothesis. Life Sci. 1990; 46: 971–982.PubMedCrossRefGoogle Scholar
  69. Stankov B, Fraschini F, Reiter RJ. Melatonin binding sites in the central nervous system. Brain Res. Rev. 1991; 16: 245–256.PubMedCrossRefGoogle Scholar
  70. Tan D-X. Chen L-D, Poeggeler B, Manchester LC, Reiter RJ. Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr. J. 1993; 1: 57–60.Google Scholar
  71. Vanecek J, Pavlik A, Illnerova H. Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res. 1987; 435: 352–362.CrossRefGoogle Scholar
  72. Vanecek J. The melatonin receptors in rat ontogenesis. Neuroendocrinology 1988; 48: 201–203.PubMedCrossRefGoogle Scholar
  73. Vanecek J, Jansky L. Short days induce changes in specific melatonin binding in hamster median eminence and anterior pituitary. Brain Res. 1989; 477: 387–390.PubMedCrossRefGoogle Scholar
  74. Vanecek J, Klein DC. Melatonin inhibits gonadotrophin-releasing hormone-induced elevation of intracellular Ca2+ in neonatal rat pituitary cells. Endocrinology 1992a; 130: 701–707.PubMedCrossRefGoogle Scholar
  75. Vanecek J, Klein DC. Sodium dependent effects of melatonin on membrane potential of neonatal rat pituitary cells. Endocrinology 1992b; 131: 939–946.PubMedCrossRefGoogle Scholar
  76. Vanecek J, Klein DC. A subpopulation of neonatal gonadotropin-releasing hormone-sensitive pituitary cells is responsive to melatonin. Endocrinology 1993; 133: 360–367.PubMedCrossRefGoogle Scholar
  77. Voordouw BCG, Euser R, Verdonk RER, Alberda BT, De Jong FH, Grogendijk AC, Fauser BCJM, Cohen M. Melatonin and melatonin-progestin combinations alter pituitary-ovarian function in women and can inhibit ovulation. J. Clin. Endocr. Metab. 1992; 74: 108–117.PubMedCrossRefGoogle Scholar
  78. Waldhauser F, Boepple PA, Schemper M, Mansfield MJ, Crowley WF. Serum melatonin in central precocious puberty is lower than in age-matched prepubertal children. J. Clin. Endocr. Metab. 1991; 73: 793–796.PubMedCrossRefGoogle Scholar
  79. Watts AG. The efferent projections of the suprachiasmatic nucleus: Anatomical insights into the control of circadian rhythms. In: Klein DC, Moore RY, Reppert SM, eds. Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, Oxford, 1991: 77–106.Google Scholar
  80. Wayne NL, Malpaux B, Karsch FJ. How does melatonin code for day length in the ewe: Duration of nocturnal melatonin release or coincidence of melatonin with a light-entrained sensitive period? Biol. Reprod. 1988; 39: 66–75.PubMedCrossRefGoogle Scholar
  81. Weaver DR, Rivkees SA, Carlson LL, Reppert SM. Localization of melatonin receptors in mammalian brain. In: Klein DC, Moore RY, Reppert SM, eds. Suprachiasmatic nucleus: the mind’s clock. Oxford University Press, New York, Oxford, 1991: 289–308.Google Scholar
  82. Weaver DR, Stehle JH, Stopa EG, Reppert SM. Melatonin receptors in human hypothalamus and pituitary: Implications for circadian and reproductive responses to melatonin. J. Clin. Endocr. Metab. 1993; 76: 295–301.PubMedCrossRefGoogle Scholar
  83. Webster JR, Suttie JM, Veenvliet BA, Manley TR, Littlejohn RP. Effect of melatonin implants on secretion of luteinizing hormone in intact and castrated rams. J. Reprod. Fertil. 1991; 92: 21–31.PubMedCrossRefGoogle Scholar
  84. White WF, Hedlund MT, Weber GF, Rippel RH, Johnson ES, Wilbur JF. The pineal gland: A supplemental source of hypothalamic-releasing hormones. Endocrinology 1974; 94: 1422–1426.PubMedCrossRefGoogle Scholar
  85. Wilson ME, Gordon TP. Nocturnal changes in serum melatonin during female puberty in rhesus monkeys: a longitudinal study. J. Endocrin. 1989a; 121: 553–562.CrossRefGoogle Scholar
  86. Wilson ME, Gordon TP. Short-day melatonin pattern advances puberty in seasonally breeding rhesus monkeys (Macaca mulatta). J. Reprod. Fertil. 1989b; 86: 435–444.PubMedCrossRefGoogle Scholar
  87. Woodfill CJI, Robinson JE, Malpaux B, Karsch FJ. Synchronization of the circannual reproductive rhythm of the ewe by discrete photoperiod signals. Biol. Reprod. 1991; 45: 110–121.PubMedCrossRefGoogle Scholar
  88. Wurtman RJ, Axelrod J, Chu EW. Melatonin, a pineal substance: Effect on the rat ovary. Science 1963; 141: 277–278.PubMedCrossRefGoogle Scholar
  89. Wurtman RJ, Lynch HJ, Sturner WQ. Melatonin in humans: possible involvement in SIDS, and use in contraceptives. Adv. Pineal Res. 1991; 5: 319–327.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • James Olcese
    • 1
  1. 1.Institute for Hormone and Fertility ResearchUniversity of HamburgHamburgGermany

Personalised recommendations