Human Cervical Cancer

Retinoids, Interferon and Human Papillomavirus
  • Richard L. Eckert
  • Chapla Agarwal
  • Joan R. Hembree
  • Chee K. Choo
  • Nywana Sizemore
  • Sheila Andreatta van Leyen
  • Ellen A. Rorke
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 354)


Cervical cancer is the third most common type of cancer in women in the United States and is the leading cause of cancer deaths in women in third world countries (1,2). Although the pathogenesis of the disease is incompletely understood, human papillomavirus (HPV) is present in over 90% of all high grade cervical lesions and is strongly implicated in the process of cancer development. A common feature of these tumors is expression of the E6 and E7 viral reading frames (3,4,5). These viral genes encode factors, E6 and E7, that interact with the p53 and pRB tumor suppressor genes (6,7,8,9,10). E6 promotes the degradation of p53 via a ubiquitin-dependent pathway (10,11) and E7 interferes with pRB function (8,9,10). Expression of E6 and E7 is sufficient for immortalization of cultured epidermal keratinocytes and cultured cervical epithelial cells (12,13,14,15).


Cervical Cancer CaSki Cell Cervical Cell Cervical Epithelial Cell Keratin Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.J. Disaia, and W.T. Creasman, Preinvasive disease of the cervix, in: “Clinical Gynecologic Oncology,” P.J. Disaia, and W.T. Creasman, eds. Mosby Year Book, St Louis (1993) pp. 1–36.Google Scholar
  2. 2.
    American Cancer Society: Cancer Facts and Figures. American Cancer Society, Atlanta (1992).Google Scholar
  3. 3.
    T.R. Broker, Structure and genetic expression of papillomaviruses, Obstet. Gynecol. Clin. North. Am., 14: 329 (1987).PubMedGoogle Scholar
  4. 4.
    H. zur Hausen, Human papillomaviruses and their possible role in squamous cell carcinomas, Curr. Top. Microbiol. Immunol., 78: 1 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    L. Gissmann, M. Boshart, M. Durst, H. Ikenberg, D. Wagner, and H. zur Hausen, Presence of human papillomavirus in genital tumors, J. Invest. Dermatol., 83: 26s (1984).Google Scholar
  6. 6.
    M.S. Lechner, D.H. Mack, A.B. Finkle, T. Crook, K.H. Vousden, and L A Laimins, Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription, EMBO J., 11: 3045 (1992).PubMedGoogle Scholar
  7. 7.
    V. Band, J.A. De Caprio, L. Delmolino, V. Kulesa, and R. Sager, Loss of p53 protein in human papillomavirus type 16 E6- immortalized human mammary epithelial cells, J. Virol., 65: 6671 (1991).PubMedGoogle Scholar
  8. 8.
    P.S. Huang, D.R. Patrick, G. Edwards, P.J. Goodhart, H.E. Huber, L. Miles, V.M. Garsky, A. Oliff, and D.C. Heimbrook, Protein domains governing interactions between E2F, the retinoblastoma gene product, and human papillomavirus type 16 E7 protein, Mol. Cell. Biol. 13: 953 (1993).PubMedGoogle Scholar
  9. 9.
    D.V. Heck, C.L. Yee, P.M. Howley, and K. Munger, Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses, Proc. Natl. Acad. Sci. USA. 89: 4442 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Munger, M. Scheffner, J.M. Huibregtse, and P.M. Howley, Interactions of HPV E6 and E7 oncoproteins with tumour suppressor gene products. Cancer. Surv., 12: 197 (1992).PubMedGoogle Scholar
  11. 11.
    J.M. Huibregtse, M. Scheffner, and P.M. Howley, A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18, EMBO J., 10: 4129 (1991).PubMedGoogle Scholar
  12. 12.
    P. Hawley-Nelson, K.H. Vousden, N.L. Hubbert, D.R. Lowy, and J.T. Schiller, HPV 16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes, EMBO J., 8: 3905 (1989).PubMedGoogle Scholar
  13. 13.
    L. Pirisi, S. Yasumoto, M. Feller, J. Domger, and J.A. DiPaolo, Transformation of human fibroblasts and keratinocytes with human papillomavirus type 16 DNA, J. Viral., 61: 1061 (1987).Google Scholar
  14. 14.
    M.S. Barbosa, and R. Schlegel, The E6 and E7 genes of HPV-18 are sufficient for inducing two-stage in vitro transformation of human keratinocytes, Oncogene, 4: 1529 (1989).PubMedGoogle Scholar
  15. 15.
    C.D. Woodworth, J. Doniger, and J.A. DiPaolo, Immortalization of human foreskin keratinocytes by various human papillomavirus DNAs corresponds to their association with cervical carcinoma, J. Virol.,. 63: 159 (1989).PubMedGoogle Scholar
  16. 16.
    A.P. Cullen, R. Reid, M. Campion, and A.T. Lorincz, Analysis of the physical state of different human papillomavirus DNAs in intraepithelial and invasive cervical neoplasm, J. Virol., 65: 606 (1991).PubMedGoogle Scholar
  17. 17.
    C.M. Chiang, G. Dong, T.R. Broker, and L.T. Chow, Control of human papillomavirus type 11 origin of replication by the E2 family of transcription regulatory proteins, J. Virol., 66: 5224 (1992).PubMedGoogle Scholar
  18. 18.
    C.M. Chiang, M. Ustav, A. Stenlund, T.F. Ho, T.R. Broker, and L.T. Chow, Viral El and E2 proteins support replication of homologous and heterologous papillomaviral origins, Proc. Natl. Acad. Sci. U S A., 89: 5799 (1992).PubMedCrossRefGoogle Scholar
  19. 19.
    H. Romanczuk, and P.M. Howley, Disruption of either the El or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity, Proc. Natl. Acad. Sci. USA., 89: 3159 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    B.C. Sang, and M.S. Barbosa, Increased E6/E7 transcription in HPV 18-immortalized human keratinocytes results from inactivation of E2 and additional cellular events, Virology, 189: 448 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Sousa, N. Dostatni, and M. Yaniv, Control of papillomavirus gene expression, Biochim. Biophys. Acta, 1032: 19 (1990).PubMedGoogle Scholar
  22. 22.
    S.L. Romnay, P.R. Palan, and C. Duttagupta, S. Wassertheil-Smolter, J. Wylie, G. Miller, N.S. Slagle, and D. Lucido, Retinoids and the prevention of cervical dysplasia, Am. J. Obst. Gyn., 141: 890 (1981).Google Scholar
  23. 23.
    W.J. Winkelstein, E.J. Shillitoe, R. Brand, and K.K. Johnson, Further comments on cancer of the uterine cervix, smoking, and herpesvirus infection, Am. J. Epidemiol., 119: 1 (1984).PubMedGoogle Scholar
  24. 24.
    H.Y. Ngan, R.J. Collins, K.Y. Wong, A. Cheung, C.F. Lai, and Y.T. Liu, Cervical human papilloma virus infection of women attending social hygiene clinics in Hong Kong, Int. J. Gynaecol. Obstet., 41: 75 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    S.M. Lippman, B.S. Glisson, J.J. Kavanagh, R. Lotan, W.K. Hong, M. Paredes Espinoza, W.N. Hittelman, E.E. Holdener, and I.H. Krakoff, Retinoic acid and interferon combination studies in human cancer, Eur. J. Cancer, 29A Suppl. 5: S9 (1993).Google Scholar
  26. 26.
    S.M. Lippman, J.J. Kavanagh, M. Paredes Espinoza, F. Delgadillo Madrueno, P. Paredes Casillas, W.K. Hong, G. Massimini, E.E. Holdener, and I.H. Krakoff, 13-cis-retinoic acid plus interferon-alpha 2a in locally advanced squamous cell carcinoma of the cervix, J. Natl. Cancer Inst., 85: 499 (1993).PubMedCrossRefGoogle Scholar
  27. 27.
    S.M. Lippman, and W.K. Hong, 13-cis-retinoic acid and cancer chemoprevention, Monogr. Natl. Cancer Inst., 13: 111 (1992).PubMedGoogle Scholar
  28. 28.
    C. Agarwal, E.A. Rorke, J.C. Irwin, and R.L. Eckert, Immortalization by human papillomavirus type 16 alters retinoid regulation of human ectocervical epithelial cell differentiation, Cancer Res., 51: 3982 (1991).PubMedGoogle Scholar
  29. 29.
    C. Agarwal, J.R. Hembree, E.A. Rorke, and R.L. Eckert, Interferon and retinoic acid suppress the growth of human papillomavirus type 16 immortalized cervical epithelial cells, but only interferon suppresses the level of the human papillomavirus transforming oncogenes, Cancer Res., 54: 2108 (1994).PubMedGoogle Scholar
  30. 30.
    L. Pirisi, A. Batova, G.R. Jenkins, J.R. Hodam, and K.E. Creek, Increased sensitivity of human keratinocytes immortalized by human papillomavirus type 16 DNA to growth control by retinoids, Cancer Res., 52: 187 (1992).PubMedGoogle Scholar
  31. 31.
    G.I. Gorodeski, R.L. Eckert, W.H. Utian, L. Sheean, and E.A. Rorke, Retinoids, sex steroids and glucocorticoids regulate ectocervical cell envelope formation but not the level of the envelope precursor, involucrin, Differentiation 42: 75 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    G.I. Gorodeski, R.L. Eckert, W.H. Utian and E.A. Rorke, Maintenance of in vivo-like keratin expression, sex steroid responsiveness and estrogen receptor expression in cultured human ectocervical epithelial cells, Endocrinology 126: 399 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    G.I. Gorodeski, R.L. Eckert, W.H. Utian, L. Sheean and E.A. Rorke, Cultured human ectocervical epithelial cell differentiation is regulated by the combined direct actions of sex steroids, glucocorticoids and retinoids, J. Clin. Endocrinol. Metab. 70: 1624 (1990).PubMedCrossRefGoogle Scholar
  34. 34.
    C.K. Choo, E.A. Rorke and R.L. Eckert, Calcium regulates the differentiation of human papillomavirus type 16 immortalized ectocervical epithelial cells, but not the expression of the papillomavirus E6 and E7 oncogenes, Exper. Cell Res. 208: 161 (1993).CrossRefGoogle Scholar
  35. 35.
    C.K. Choo, E.A. Rorke, and R.L. Eckert, Differentiation-dependent constitutive expression of the human papillomavirus type 16 E6 and E7 oncogenes in CaSki cervical tumor cells, J. Gen. Virol. 75: 1139 (1994).PubMedCrossRefGoogle Scholar
  36. 36.
    N. Sizemore, and E.A. Rorke, Retinoid regulation of human ectocervical epithelial cell transglutaminase activity and keratin gene expression, Differentiation 54: 219 (1993).PubMedCrossRefGoogle Scholar
  37. 37.
    L. Kasturi, N. Sizemore, R.L. Eckert, K. Martin, and E.A. Rorke, Calcium modulates cornified envelope formation, involucrin content, and transglutaminase activity in cultured human ectocervical epithelial cells, Exp. Cell. Res. 205: 84 (1993).PubMedCrossRefGoogle Scholar
  38. 38.
    S. Andreatta-van Leyen, J.R. Hembree, and R.L. Eckert, Regulation of IGF-I binding protein 3 levels by epidermal growth factor and retinoic acid in cervical epithelial cells, J Cell. Physiol. 160: 265 (1994).CrossRefGoogle Scholar
  39. 39.
    J. Hembree, C. Agarwal and R.L. Eckert, Epidermal growth factor suppresses insulin-like growth factor binding protein-3 levels in human papillomavirus type 16-immortalized cervical epithelial cells and thereby potentiates the effects of IGF-I, Cancer Res. 54: 3160 (1994).PubMedGoogle Scholar
  40. 40.
    N. Sizemore, and E.A. Rorke, Human papillomavirus 16 immortalization of normal human ectocervical epithelial cells alters retinoic acid regulation of cell growth and epidermal growth factor receptor expression, Cancer Res. 53: 4511 (1993).PubMedGoogle Scholar
  41. 41.
    C.K. Choo, E.A. Rorke, and R.L. Eckert, Human papillomavirus E6 and E7 oncogene expression is not correlated with cell proliferation or c-myc RNA expression in HPV 16-immortalized human cervical epithelial cells treated with retinoids, Cancer Res. (submitted).Google Scholar
  42. 42.
    R.A. Pattillo, R.O. Hussa, M.T. Story, A.C. Ruckert, M.R. Shalaby, and R.F. Mattingly, Tumor antigen and human chorionic gonadotropin in CaSki cells: a new epidermoid cervical cancer cell line, Science 196: 1456 (1977).PubMedCrossRefGoogle Scholar
  43. 43.
    B.M. Gilfix, and R.L. Eckert, Coordinate control by vitamin A of keratin gene expression in human keratinocytes, J. Biol. Chem. 260: 14026 (1985).PubMedGoogle Scholar
  44. 44.
    R.L. Eckert and H. Green, Cloning of cDNAs specifying vitamin A-responsive human keratins, Proc. Natl. Acad. Sci. USA 81: 4321 (1984).PubMedCrossRefGoogle Scholar
  45. 45.
    M. Athar, R. Agarwal, Z.Y. Wang, J.R. Lloyd, D.R. Bickers and H. Mukhtar, All-trans-retinoic acid protects against conversion of chemically induced and ultraviolet B radiation induced skin papillomas to carcinomas, Carcinogenesis 12: 2325 (1991).PubMedCrossRefGoogle Scholar
  46. 46.
    N. Sizemore, L. Kasturi, G. Gorodeski R.L. Eckert, A.M. Jetten and E.A. Rorke, Retinoids regulate human ectocervical epithelial cell transglutaminase activity and keratin gene expression, Differentiation 54: 219 (1993).PubMedCrossRefGoogle Scholar
  47. 47.
    R.L. Eckert, Structure, function, and differentiation of the keratinocyte, Physiol. Rev., 69: 1316 (1989).PubMedGoogle Scholar
  48. 48.
    W.S. Cohick and D.R. Clemmons, Regulation of insulin-like growth factor binding protein synthesis and secretion in a bovine epithelial cell line, Endocrinology, 129: 1347 (1991).PubMedCrossRefGoogle Scholar
  49. 49.
    D.P. DeLeon, B. Bakker, D.M. Wilson, R.L. Hintz, and R.G. Rosenfeld, Demonstration of insulin-like growth factor (IGF-I and -II) receptors and binding proteins in human breast cancer cell lines, Biochem. Biophys. Res. Comun., 152: 398 (1988).CrossRefGoogle Scholar
  50. 50.
    R.C. Baxter, and J.L. Martin, Binding proteins for insulin-like growth factors: structure, regulation and function, Prog. Growth Factor Res. 1: 49 (1989).PubMedCrossRefGoogle Scholar
  51. 51.
    N. Darwiche, G. Celli, L. Sly, F. Lancillotti, and L.M. De Luca, Retinoid status controls the appearance of reserve cells and keratin expression in mouse cervical epithelium, Cancer Res., 53: 2287 (1993).PubMedGoogle Scholar
  52. 52.
    R. Moll, W.W. Franke, D.L. Schiller, B. Geiger, and R. Krepler, The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells, Cell 31: 11 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Richard L. Eckert
    • 1
  • Chapla Agarwal
    • 1
  • Joan R. Hembree
    • 1
  • Chee K. Choo
    • 1
  • Nywana Sizemore
    • 1
  • Sheila Andreatta van Leyen
    • 1
  • Ellen A. Rorke
    • 1
  1. 1.Departments of Physiology and Biophysics, Dermatology, Reproductive Biology, Biochemistry, and Environmental Health SciencesCase Western Reserve University School of MedicineClevelandUSA

Personalised recommendations