Skip to main content

Microwave Exposure Limits for the Eye: Applying Infrared Laser Threshold Data

  • Chapter
Radiofrequency Radiation Standards

Part of the book series: NATO ASI Series ((NSSA,volume 274))

  • 230 Accesses

Abstract

A large body of knowledge exists on the adverse effects of intense infrared radiant energy upon the eye. Infrared heat cataracts were common in industry at the turn of the century, but are now rare. Epidemiological and animal studies permitted the establishment of occupational exposure limits to infrared radiation. More recently, infrared laser bioeffects studies have permitted an understanding of both single-pulse and repetitive-pulse infrared laser injury to the cornea. From a knowledge of penetration depth at different laser wavelengths, one should be able to predict the adverse effects of higher frequency pulsed microwaves upon the eye. These predictions are compared with published data of microwave effects upon the cornea.

These views and opinions are those of the authors and do not necessarily state or reflect those of the U.S. Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Sliney. Non-ionizing radiation, in (L.V. Cralley, Ed.), Industrial Environmental Health, the Worker and the Community, New York, Academic Press, pp. 171–241 (1972).

    Google Scholar 

  2. W.B. Deichmann and F.H. Stephens. Industr. Med. Surg., 30:221 (1961).

    CAS  Google Scholar 

  3. R.L. Carpenter, Ocular effects of microwave radiation, Bull N. Y. Acad. Med, 55:1048–1057 (1979).

    PubMed  CAS  Google Scholar 

  4. E. Lydahl, L.E. Paulsson and B. Philipson, Effects of microwaves, separately and in combination with galactose, on the eye, in: Current Concepts in Ergophthalmology, Societas Ergophthalmologica Internationalis, B.T. Tengroth and D. Epstein, eds., Stockholm (1978).

    Google Scholar 

  5. P. Kramar, C. Harris, A.F. Emery, and A.W. Guy, Acute microwave irradiation and cataract formation in rabbits and monkeys, J. Microwave Power, 13:239–249 (1978).

    CAS  Google Scholar 

  6. B. Appleton, S.E. Hirsch and P.V.K. Brown, Investigation of single-exposure microwave ocular effects at 3000 MHz, Ann. NY Acad. Sci., 247:125–134 (1978).

    Article  Google Scholar 

  7. E. Aurell, B. Tengroth, Lenticular and retinal changes secondary to microwave exposure, Acta Ophthal 51:764–771, (1973).

    Article  PubMed  CAS  Google Scholar 

  8. D.H. Sliney and M.L. Wolbarsht. Safety with Lasers and Other Optical Sources. New York: Plenum Publishing Corp (1980).

    Google Scholar 

  9. B. Stuck, DJ. Lund and E.S. Beatrice, “Ocular Effects of Laser Radiation from 1.06 to 2.06 μm,” SPIE Vol 229, Ocular Effects of Non-Ionizing Radiation, pp 115-120, (1980).

    Google Scholar 

  10. D.H. Sliney and B.C. Freasier, The evaluation of optical radiation hazards, Applied Opt, 12(1):1–24 (1973).

    Article  CAS  Google Scholar 

  11. D.G. Pitts and A.P. Cullen, Determination of infrared radiation levels for acute ocular cataractogenesis, Albrecht von Graefes Arch Klin Ophthalmol, 217:285–297 (1981).

    CAS  Google Scholar 

  12. F. Hillenkamp. Laser Interactions with Biological Tissue, in: Lasers in Biology and Medicine, F. Hillenkamp, C. A. Sacchi, and T. Arrechi, eds., Plenum Press, New York (1980).

    Google Scholar 

  13. American Conference of Governmental Industrial Hygienists (ACGIH) (1993), TLV’s, Threshold Limit Values and Biological Exposure Indices for 1993–1994, American Conference of Governmental Industrial Hygienists, Cincinnati, OH.

    Google Scholar 

  14. ACGIH Documentation for the Threshold Limit Values, 4th Edn., American Conference of Governmental Industrial Hygienists, Cincinnati, OH (1991).

    Google Scholar 

  15. IRPA, International Non-Ionizing Radiation Committee, Guidelines for Limits of Human Exposure to Non-Ionizing Radiation, New York, MacMillan (1991).

    Google Scholar 

  16. World Health Organization [WHO], Environmental Health Criteria No. 23, Lasers and Optical Radiation, joint publication of the United Nations Environmental Program, the International Radiation Protection Association and the World Health Organization, Geneva (1982).

    Google Scholar 

  17. ANSI Safe Use of Lasers, Standard Z-136.1-1993, American National Standards Institute, Laser Institute of America, Orlando, FL (1993).

    Google Scholar 

  18. D.H. Sliney, Physical factors in cataractogenesis—ambient ultraviolet radiation and temperature, Invest Ophthalmol Vis Sci, (1987).

    Google Scholar 

  19. S. Lerman. Radiant Energy and the Eye, MacMillan & Co., New York (1980).

    Google Scholar 

  20. W.T. Ham, Jr. (1983). The photopathology and nature of the blue-light and near-UV retinal lesion produced by lasers and other optical sources, in: “Laser Applications in Medicine and Biology,” M. L. Wolbarsht, ed., New York, Plenum Publishing Corp. (1989).

    Google Scholar 

  21. W.T. Ham, Jr., H.A. Mueller, and D.H. Sliney, Retinal sensitivity to damage by short-wavelength light. Nature, 260(5547): 153–155, March 11, (1976).

    Article  PubMed  Google Scholar 

  22. H.A. Kues, Microwave Biological Effects Program Review, Report JHU/APL, SR 90-2, Johns Hopkins University Applied Physics Laboratory, Laurel Maryland, April 1, (1990).

    Google Scholar 

  23. W.T. Ham, Jr., H.A. Mueller, M.L. Wolbarsht, and D.H. Sliney, Evaluation of retinal exposures from repetitively pulsed and scanning lasers, Health Phys., 54(3):337–344 (1988).

    Article  PubMed  Google Scholar 

  24. D.H. Sliney and J. Marshall, Tissue specific damage to the retinal pigment epithelium: mechanisms and therapeutic implications, Lasers Light Ophthalmol. 5(1):17–28 (1992).

    Google Scholar 

  25. K.R. Foster and H.P. Schwann. Dielectric properties of tissues, in (C. Polk and E. Postow, Eds.), CRC Handbook of Biological Effects of Electromagnetic Field, Boca Raton, CRC Press, PP. 27–96 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sliney, D.H., Stuck, B.E. (1995). Microwave Exposure Limits for the Eye: Applying Infrared Laser Threshold Data. In: Klauenberg, B.J., Grandolfo, M., Erwin, D.N. (eds) Radiofrequency Radiation Standards. NATO ASI Series, vol 274. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0945-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0945-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0947-3

  • Online ISBN: 978-1-4899-0945-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics