Skip to main content

Effects of Radiofrequency Radiation (RFR) on Neurophysiological Stress Indicators

  • Chapter
  • 224 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 274))

Abstract

Although the scientific community has been attempting to define the concept of stress for several hundred years, we have yet to devise a scientifically rigorous definition. The origins of the concept flow directly from Darwin’s formulation of natural selection. In his view, the environment is in constant change (seasonal, chemical, geological, etc.) or it is continually being altered by its inhabitants. In the organism’s struggle for existence, the environment is potentially threatening or dangerous due to the withdrawal of resources, the disruption of health by infection, starvation, heat or cold, and the threat of predators or competitors. Thus, Stressors are selective pressures that derive from the physical and social environment. The environmental challenge, called stress, elicits physiological, as well as behavioral and psychological responses, which are specific and appropriate to the stressful situation.1

These views and opinions are those of the author and do not necessarily state or reflect those of the U.S. Government.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Yirmiya, Y. Shavit, S. Ben-Eliyahu, R.P. Gale, J.C. Lebeskind, A.N. Taylor and H. Wagner, Modulation of immunity and neoplasia by neuropeptides released by Stressors, in: “Stress: Neuropeptides, and Systemic Disease,” J.A. McCubbin, P.G. Kaufmann and C.B. Nemeroff, eds., Academic Press, San Diego, 261–286 (1991).

    Chapter  Google Scholar 

  2. H. Selye, The evolution of the stress concept, Am. Sci. 61:692–699 (1970).

    Google Scholar 

  3. H. Anisman, A. Pizzino and L.S. Sklar, Coping with stress, norepinephrine depletion and escape performance, Brain Res. 191:583–588 (1980).

    Article  PubMed  CAS  Google Scholar 

  4. J.M. Weiss, Effect of coping behavior in different warning signal conditions on stress pathology in rats, J. Comp. Physiol. Psychol. 77:23–30 (1971).

    Google Scholar 

  5. D.M. Gibbs, Vasopressin and Oxytocin: Hypothalamic modulators of the stress response: A review, Psychoneuroendocrinology, 11:131–140 (1986).

    Article  PubMed  CAS  Google Scholar 

  6. N.B. Thoa, Y. Tizabi and D.M. Yacobowitz, The effect of isolation on catecholamine concentration and turnover in discrete areas of the rat brain, Brain Res. 131:259–269 (1977).

    Article  PubMed  CAS  Google Scholar 

  7. S. Ritter and N.L. Pelzer, Magnitude of stress-induced norepinephrine depletion varies with age, Brain Res., 152:170–175(1978).

    Article  PubMed  CAS  Google Scholar 

  8. R.E. Wimer, R. Norman and B.E. Eleftheriou, Serotonin levels in the hippocampus: Striking variations associated with mouse strain and treatment, Brain Res. 63:397–401 (1974).

    Article  Google Scholar 

  9. R. Levins and R. Lewontin, “The Dialectical Biologist.” Harvard University Press, Cambridge, MA, (1985).

    Google Scholar 

  10. J.E. Morley, D. Benton and G.F. Solomon, The role of stress and opioids as regulators of the immune response, in: “Stress Neuropeptides and Systemic Disease,” J.A. McCubbin, P.G. Kaufmann, C.B. Nimeroff, eds., Academic Press, San Diego, CA, 221–231 (1991).

    Chapter  Google Scholar 

  11. M. Kavaliers and K.-P. Ossenkopp, Stress-induced opioid analgesia and activity in mice: Inhibitory influences of exposure to magnetic fields, Psychopharmacology 89:440–443 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. G.C. Teskey, F.S. Prato, K.-P. Ossenkopp and M. Kavaliers, Exposure to time varying magnetic fields associated with magnetic resonance imaging reduces fentanyl-induced analgesia in mice, Bioelectromagnetics 9:167–174 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. J. Axelrod and T.D. Reisine, Stress hormones: Their interaction and regulation. Science, 224:452–459 (1984).

    Article  PubMed  CAS  Google Scholar 

  14. J.H. Merritt, R.H. Hartzell and J.W. Frazer, The effect of 1.6 GHz on neurotransmitters in discrete areas of the brain, SAM-TR-76-3, USAF School of Aerospace Medicine. Aerospace Medical Division, 1-11, (1976).

    Google Scholar 

  15. J.H. Merritt, A.F. Chamness, R.H. Hartzell and S.J. Allen, Orientation effects on microwave-induced hyperthermia and neurochemical correlates, J. Microwave Power 12:167 (1977).

    CAS  Google Scholar 

  16. R. Inaba, K. Shishido, A. Okada and T. Moroji, Effects of whole body microwave exposure on the rat brain contents of biogenic amines. Eur. J. Appl. Physiol., 65:124–128 (1992).

    Article  CAS  Google Scholar 

  17. Z.V. Gordon. “Biological Effects of Microwaves in Occupational Hygiene,” Israel Program for Scientific Translations, Jerusalem, Israel. NASA TT-F-633, TT70-50087; NTIS N71-14632, 101 (1970).

    Google Scholar 

  18. M.S. Tolgskaya and Z.V. Gordon, Pathological effects of radio waves, (Trans. from Russian by B. Haigh). LC Cat. Card 72-94825. Consultant’s bureau, New York, NY, 63-106 (1973).

    Google Scholar 

  19. V.S. Biliokrinitsky, Changes in the tigroid substance of neurons under the effect of radio waves, Fiziol. Zh. (Kiev) 12:70 (1966).

    Google Scholar 

  20. G.N. Austin and S.M. Horvath, Production of convulsions in rats by high frequency electrical currents, Am. J. Phys. Med. 33:141–149, (1954).

    PubMed  CAS  Google Scholar 

  21. E.N. Albert and M. DeSantis, Do microwaves alter nervous system structure? Ann. N. Y. Acad. Sci., 247:87–108 (1975).

    Article  PubMed  CAS  Google Scholar 

  22. S. Baranski, Histological and histochemical effects of microwave irradiation on the central nervous system of rabbits and guinea pigs, Am. J. Phys. Med. 51(4):182–191 (1972).

    PubMed  CAS  Google Scholar 

  23. S. Lu, N. Lebda, S. Pettit, S.M. Michaelson, Microwave-induced temperature, corticosterone and thyrotropin interrelationships, J. Appl. Physiol.:Respirat. Environ. Exercise Physiol 50:399–405 (1981).

    CAS  Google Scholar 

  24. R.H. Lovely, D.E. Myers and A.W. Guy, Irradiation of rats by 918-MHz microwaves at 2.5 mW/cm2: Delineating the dose-response relationship, Radio Sci. 12 (6S):139–146 (1977).

    Article  Google Scholar 

  25. W.G. Lotz and S.M. Michaelson, Temperature and corticosterone relationships in microwave exposed rats, J. Appl. Physiol. 44:438–445 (1978).

    PubMed  CAS  Google Scholar 

  26. W.G. Lotz and S.M. Michaelson, Effects of hypophysectomy and dexamethasone on rat adrenal response to microwaves, J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 47:1284–1288 (1979).

    CAS  Google Scholar 

  27. A.A. Novitskii, B.F. Murashov, P.E. Krasnobaev and N.F. Markozova, The functional condition of the system hypothalamus-hypophysis-adrenal cortex as a criterion in establishing the permissible levels of superhigh frequency electromagnetic emissions, Voen. Med. Zh. 8:53 (1977).

    PubMed  Google Scholar 

  28. H. Lai, M.A. Carino, A. Horita and A.W. Guy, Corticotropin-releasing factor antagonist blocks microwave-induced decreases in high-affinity choline uptake in the rat brain, Brain Res. Bul. 25:609–612 (1990).

    Article  CAS  Google Scholar 

  29. R.M. Quock, B.J. Klauenberg, W.D. Hurt and J.H. Merritt, Influence of microwave exposure on chlordiazepoxide effects in the mouse staircase test, Pharmacol. Biochem. Behav. 47:845–849 (1994).

    Article  PubMed  CAS  Google Scholar 

  30. J. Thomas, L. Burch and S. Yeandle, Microwave radiation and chlordiazepoxide: synergistic effects on fixed-interval behavior, Science, 203:1357 (1979).

    Article  PubMed  CAS  Google Scholar 

  31. H. Lai, M.A. Carino, A. Horita and A.W. Guy, Single vs. repeated microwave exposure: Effects on benzodiazepine receptors in the brain of the rat, Bioelectromagnetics, 13:57–66 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. G.A. Mickley, K.E. Stevens, G.A. White and G.L. Gibbs, Endogenous opiates mediate radiogenic behavioral change, Science, 220:1185–1187 (1983).

    Article  PubMed  CAS  Google Scholar 

  33. H. Lai, A. Horita, C.K. Chou and A.W. Guy, Psychoactive-drug response is affected by acute low-level microwave irradiation, Bioelectromagnetics 4:205–214 (1983).

    Article  PubMed  CAS  Google Scholar 

  34. H. Lai, A. Horita, C.K. Chou and A.W. Guy, Microwave-induced post exposure hyperthermia: Involvement of endogenous opioids and serotonin, IEEE Trans. Microwave Theory Techniques MTT-32:882–887 (1984).

    Article  CAS  Google Scholar 

  35. H. Lai, A. Horita, C.K. Chou and A.W. Guy, Low-level microwave irradiation attenuates naloxone-induced withdrawal syndrome in morphine-dependent rats, Pharmacol. Biochem. Behav. 24:151–153 (1986).

    Article  PubMed  CAS  Google Scholar 

  36. H. Lai, M.A. Carino, A. Horita and A.W. Guy, Opioid receptor subtypes that mediate a microwave-induced decrease in central cholinergic activity in the rat, Bioelectromagnetics 13:237–246 (1992).

    Article  PubMed  CAS  Google Scholar 

  37. Z. Edelwejn, Attempted evaluation of the functional state of brain synapses in rabbits exposed chronically to the action of microwaves, Acta Physiol. Pol. 19:791, (1968).

    Google Scholar 

  38. B. Servantie, G. Bertharion, R. Joly, A. Servantie, J. Etienne, P. Dreyfus and P. Escoubet, Pharmacologic effects of a pulsed microwave field, in: “Biologic effects and health hazards of microwave radiation,” P. Czerski, K. Ostrowski, M.L. Shore, C. Silverman, M.J. Suess and B. Waldeskog, eds., Polish Medical Publishers, Warsaw, Poland, 36–45 (1974).

    Google Scholar 

  39. K. Ryan, M.R. Frei, R.E. Berger and J.R. Jauchem, Inhibition of nitric oxide synthesis during hypotension induced by 35-GHz radiofrequency irradiation of anesthetized rats, “Proceedings of the Annual Scientific Session of the Bioelectromagnetics Society,” in press (1993).

    Google Scholar 

  40. J.R. Lancaster, Nitric oxide in cells, Am. Scientist., 80:248–259 (1992).

    Google Scholar 

  41. G.A. Mickley, B.L. Cobb, P. Mason and L.K. Weigel, Microwave-induced hyperthermia disrupts working memory and evokes selective expression of brain c-fos, in: “Electricity and Magnetism in Biology and Medicine,” M. Blank, ed., San Francisco Press, San Francisco, CA (1993).

    Google Scholar 

  42. J.L. Marx, The fos gene as “master switch,” Science, 237:854–856 (1987).

    Article  PubMed  CAS  Google Scholar 

  43. P. Mason, Armstrong Laboratory, Brooks AFB, TX, Personal communication, (1993).

    Google Scholar 

  44. S. Lindquist, The heat shock response, Ann. Rev. Biochem. 55:1151–1191 (1986).

    Article  PubMed  CAS  Google Scholar 

  45. S.M. Michaelson, Thermoregulation in Intense Microwave Fields, in: Microwaves and Thermoregulation, E.R. Adair, ed., Academic Press, New York, 283–295 (1983).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mickley, G.A. (1995). Effects of Radiofrequency Radiation (RFR) on Neurophysiological Stress Indicators. In: Klauenberg, B.J., Grandolfo, M., Erwin, D.N. (eds) Radiofrequency Radiation Standards. NATO ASI Series, vol 274. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0945-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0945-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0947-3

  • Online ISBN: 978-1-4899-0945-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics