Infrared Emission Spectroscopy

  • W. Suëtaka
  • John T. YatesJr.
Part of the Methods of Surface Characterization book series (MOSC, volume 3)


A molecule in a vibrationally excited state has a certain probability of emitting infrared radiation in the presence or in the absence of incident electromagnetic radiation, resulting in induced and spontaneous emission, respectively. At room temperature (T ≃ 300K), the number of molecules in a first excited state is less than 1% of the population in the ground state, when the separation of energy levels is about 1000 cm−1, typical in the infrared. The population should be negligible in still higher states. In consequence, the induced infrared emission is much weaker than the (induced) absorption. However, the spontaneous infrared emission is stronger than the induced emission under the experimental conditions generally employed in observing surface species, as described in Section 2.1 of Chapter 2. The infrared emission spectrum of a thin film on a solid surface, therefore, may easily be observed at moderately elevated temperatures.


Emission Spectrum Metal Surface Emission Intensity Vinyl Acetate Surface Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.B. Bates, in: Fourier Transform Infrared Spectrosopy, Applications to Chemical Systems, Vol. 1 (J.R. Fcrraro and L.J. Basile, eds.), Academic, New York (1978), p. 99.CrossRefGoogle Scholar
  2. 2.
    N. Sheppard, in: Analytical Application of FT-IR to Molecular and Biological Systems (J.R. Durig, ed.), Reidet, Dordrecht, Holland (1980), p. 125.CrossRefGoogle Scholar
  3. 3.
    R.P. Eischens and W.A. Pliskin, Advan. Catal. 10, 51 (1958).Google Scholar
  4. 4.
    M.J.D. Low and H. Inoue, Anal. Chem. 36, 2397 (1964).CrossRefGoogle Scholar
  5. 5.
    M.J.D. Low and I. Coleman, Spcctrochim, Acta 22, 369 (1966).CrossRefGoogle Scholar
  6. 6.
    P.R. Griffiths, Appl. Spectrosc. 26, 73 (1972).CrossRefGoogle Scholar
  7. 7.
    G. Fabbri and P. Baraldi, Appl. Spectrosc. 26, 593 (1972).CrossRefGoogle Scholar
  8. 8.
    J.F. Blanke, S.E. Vincent, and J. Overend, Spectrochim. Acta 32A, 163 (1976).Google Scholar
  9. 9.
    J.F. Blanke and J. Overend, Spectrochim. Acta 32A, 1383 (1976).Google Scholar
  10. 10.
    D. Kember, D.H. Chenery, N. Sheppard, and J. Fell, Spectrochim. Acta 35A, 455 (1979).Google Scholar
  11. 11.
    R.G. Greenler, Surf. Sci 69, 647 (1977).CrossRefGoogle Scholar
  12. 12.
    R.G. Greenler, J. Vac. Sci. Technol. 12, 1410 (1975).CrossRefGoogle Scholar
  13. 13.
    K. Makinouchi, K. Wagatsuma, and W. Suëtaka, J. Spectrosc. Soc. Jpn. 29, 23 (1980).CrossRefGoogle Scholar
  14. 14.
    H. Momose, M. E. Thesis, Tohoku University (1988).Google Scholar
  15. 15.
    D.L. Allara, D. Teicher, and J.F. Durana, Chem. Phys. Lett. 84, 20 (1981).CrossRefGoogle Scholar
  16. 16.
    S. Chiang, R.G. Tobin, and P.L. Richards, J. Electron Spectrosc. Relat. Phenom. 29, 113 (1983).CrossRefGoogle Scholar
  17. 17.
    P.L. Richards and R.G. Tobin, in: Vibrational Spectroscopy of Molecules on Surfaces (J.T. Yates, Jr. and T.E. Madey, eds.). Plenum, New York (1987), p. 417.CrossRefGoogle Scholar
  18. 18.
    K. Wagatsuma, K. Monma, and W. Suëtaka, Appl. Surf. Sci. 7, 281 (1981).CrossRefGoogle Scholar
  19. 19.
    K. Ohta and H. Ishida, Appl. Opt. 29, 2466 (1990).CrossRefGoogle Scholar
  20. 20.
    D. Kember and N. Sheppard, Appl. Spectrosc. 29, 496 (1975).CrossRefGoogle Scholar
  21. 21.
    T. Wadayama, W. Shiraishi, A. Hatta, and W. Suëtaka, Appl. Surf. Sci. 44, 43 (1990).CrossRefGoogle Scholar
  22. 22.
    K. Tochigi, H. Momose, Y. Misawa, and T. Suzuki, Appl. Spectrosc. 46, 156 (1992).CrossRefGoogle Scholar
  23. 23.
    R.G. Tobin, S. Chiang, P.A. Thiel, and P.L. Richards, Surf. Sci. 140, 393 (1984).CrossRefGoogle Scholar
  24. 24.
    S. Chiang, R.G. Tobin, P.L. Richards, and P.A. Thiel, Phys. Rev. Lett. 52, 648 (1984).CrossRefGoogle Scholar
  25. 25.
    R.G. Tobin and P.L. Richards, Surf. Sci. 179, 387 (1987).CrossRefGoogle Scholar
  26. 26.
    B.E. Hayden and A. M. Bradshaw, Surf. Sci. US, 757 (1983).Google Scholar
  27. 27.
    R.G. Tobin, R.B. Phelps, and P.L. Richards, Surf. Sci. 183, 427 (1987).CrossRefGoogle Scholar
  28. 28.
    K. Wagatsuma and W. Suëtaka, J. Spectrosc. Soc. Jpn 30, 258 (1981).CrossRefGoogle Scholar
  29. 29.
    T. Wadayama, H. Mizuseki, and A. Hatta, Vibrational Spectrosc. 2, 239 (1991).CrossRefGoogle Scholar
  30. 30.
    D. Mazzarese, K.A. Jones, and W.C. Conner, J. Electron. Mater. 21, 329 (1992).CrossRefGoogle Scholar
  31. 31.
    J.L. Lauer and P. Vogel, Appl. Surf. Sci. 18, 182 (1984).CrossRefGoogle Scholar
  32. 32.
    M.J.D. Low, K.H. Brown, and H. Inoue, J. Colloid Interface Sci. 24, 252 (1967).CrossRefGoogle Scholar
  33. 33.
    L.M. Gratton, S. Paglia, F. Scattaglia, and M. Cavallini, Appl. Spectrosc. 32, 310 (1978).CrossRefGoogle Scholar
  34. 34.
    T. Matsui, K. Tani, S. Ohashi, and T. Tanaka, J. Spectrosc Soc. Jpn. 31, 360 (1982).CrossRefGoogle Scholar
  35. 35.
    Y. Nagasawa and A. Ishitani, Appl. Spectrosc. 38, 168 (1984).CrossRefGoogle Scholar
  36. 36.
    J.L. Lauer and V. M. King, ASLE Preprint 80-AM-4D-2 (1980).Google Scholar
  37. 37.
    D.R. Kember and N. Sheppard, J. Chem. Soc., Faraday Trans. 2, 77, 1321 (1981).CrossRefGoogle Scholar
  38. 38.
    D.A. Manteli, S.R. Ryali, and G.L. Haller, Chem. Phys. Lett. 102, 37 (1983).CrossRefGoogle Scholar
  39. 39.
    D.H. Sullivan, W.C. Conner, and M.P. Harold, Appl. Spectrosc. 46, 811 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • W. Suëtaka
    • 1
  • John T. YatesJr.
    • 2
  1. 1.Tohoku UniversityTsuchiuraJapan
  2. 2.Surface Science CenterUniversity of PittsburghPittsburghUSA

Personalised recommendations