Potential Role of Dietary Isoflavones in the Prevention of Cancer

  • Stephen Barnes
  • Greg Peterson
  • Clinton Grubbs
  • Ken Setchell
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 375)


The death rate from cancer in the United States is unacceptably high. However, examination of time-related changes in death rates from individual cancers reveals that deaths from some cancers (e.g., stomach cancer) have fallen dramatically over the past 50 years, whereas others (principally lung cancer) have risen sharply.1 Since lung cancer is strongly associated with cigarette smoking, new public health policies with regard to smoking should lead to a reduction in the rate of this cancer.


Mammary Tumor Human Prostate Cancer Cell Human Prostate Cancer Cell Line Total Isoflavone Content Glucoside Conjugate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.R. Newell, Epidemiology of cancer, in: Cancer. Principles and Practice of Oncology, 2nd ed, V.T. DeVita, Jr., S. Hellman, and S.A. Rosenberg, eds., Lippincott, Philadelphia, pp. 151–195 (1985).Google Scholar
  2. 2.
    American Cancer Society, Cancer facts & figures—1991, ACS, Atlanta (1991).Google Scholar
  3. 3.
    J.E. Dunn, Cancer epidemiology in populations of the United States—with emphasis on Hawaii and California—and Japan, Cancer Res 35:3240–3245 (1975).PubMedGoogle Scholar
  4. 4.
    G.E. Gray, M.C. Pike, B.E. Henderson, Breast cancer incidence and mortality rates in different countries in relation to known factors and dietary practice, Br J Cancer 39:1–7 (1979).PubMedCrossRefGoogle Scholar
  5. 5.
    H. Shimizu, R.K. Ross, L. Bernstein, R. Yatani, B.E. Henderson, T.M. Mack, Cancer of the prostate and breast among Japanese and white immigrants in Los Angeles County, Br J Cancer 63:963–966 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Greenwald, Principles of cancer prevention: Diet and nutrition, in: Cancer. Principles and Practice of Oncology, 3rd ed, V.T. DeVita, Jr., S. Hellman, and S.A. Rosenberg, eds., Lippincott, Philadelphia, pp. 151–195 (1989).Google Scholar
  7. 7.
    W.C. Willett, M.J. Stampfer, G.A. Colditz, B.A. Rosner, C.H. Hennekens, F.E. Speizer, Dietary fat and the risk of breast cancer, N Engl J Med 316:22–28 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    W.C. Willett, DJ. Hunter, M.J. Stampfer, G.A. Colditz, J.E. Manson, D. Spiegelman, B.A. Rosner, C.H. Hennekens, F.E. Speizer, Dietary fat and fiber in relation to the risk of breast cancer, JAMA 268:2037–2044 (1992).PubMedCrossRefGoogle Scholar
  9. 9.
    Unpublished data compiled by Soyatech Inc., Bar Harbor, Maine.Google Scholar
  10. 10.
    L. Coward, N. Barnes, S. Barnes, K.D.R. Setchell, Genistein and daidzein and their β-gluco-side conjugates: Antitumor isoflavones in soybean foods from American and Asian diets, J Agric Food Sci, (in press).Google Scholar
  11. 11.
    B.Y. Tang, N.R. Adams, Effect of equol on oestrogen receptors and on synthesis of DNA and protein in the immature rat uterus, J Endocrin 85:291–297 (1980).CrossRefGoogle Scholar
  12. 12.
    K.D.R. Setchell, S.P. Borriello, P. Hulme, D.N. Kirk, M. Axelson, Non-steroidal estrogens of dietary origin: possible roles in hormone-dependent disease, Am J Clin Nutr 40:569–578 (1984).PubMedGoogle Scholar
  13. 13.
    S. Barnes, C. Grubbs, K.D.R. Setchell, J. Carlson, Soybeans inhibit mammary tumors in models of breast cancer, in: Mutagens and Carcinogens in the Diet, M. Pariza, ed., Liss, New York, pp. 239–253 (1990).Google Scholar
  14. 14.
    H.P. Lee, L. Gourley, S.W. Duffy, J. Esteve, J. Lee, N.E. Day, Dietary effects on breast cancer risk in Singapore, Lancet 337:1197–1200 (1991).PubMedCrossRefGoogle Scholar
  15. 15.
    R.K. Severson, A.M.Y. Nomura, J.S. Grove, G.N. Stemmerman, A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii, Cancer Res 49:1857–1860 (1989).PubMedGoogle Scholar
  16. 16.
    W. Troll, R. Wiesner, C.J. Shellabarger, S. Holtzman, J.P. Stone, Soybean diet lowers breast tumor incidence in irradiated rats, Carcinogenesis 1:469–472 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    W. Troll, K. Frenkel, R. Wiesner, Protease inhibitors as anticarcinogens, J Natl Cane Inst 73:1245–1250 (1984).Google Scholar
  18. 18.
    K.D.R. Setchell, M.B. Welsh, C.K. Lim, HPLC analysis of phytoestrogens in soy protein preparations with ultraviolet, electrochemical, and thermospray mass spectrometric detection, J Chromatogr 368:315–323 (1987).Google Scholar
  19. 19.
    M. Axelson, J. Sjovall, B. Gustafsson, K.D.R. Setchell, Soya—a dietary source of the non-steroid oestrogen equol in humans and animals, J Endocr 10Z:49–56 (1984).CrossRefGoogle Scholar
  20. 20.
    J. Carmichael, W.G. DeGraff, A. Gazdar, J. Minna, J.B. Mitchell, Evaluation of a tetrazolium-base semiautomated colorimetric assay: Assessment of chemosensitivity testing, Cancer Res 47:936–942 (1987).PubMedGoogle Scholar
  21. 21.
    E.D. Walter, Genistin (an isoflavone glucoside) and its aglucone, genistein from soybean, J Am Oil Chem Soc 63:3273–3276 (1941).CrossRefGoogle Scholar
  22. 22.
    L.S. Gold, T.H. Slone, B.R. Stern, N.B. Manley, B.N. Ames, Rodent carcinogens: Setting priorities, Science 258:261–265 (1992).PubMedCrossRefGoogle Scholar
  23. 23.
    EJ. Hawrylewicz, H.H. Huang, W.H. Blair, Dietary soybean isolate and methionine supplementation affect mammary tumor progression in rats, J Nutr 121:1693–1698 (1991).PubMedGoogle Scholar
  24. 24.
    T.G. Peterson, S. Barnes, Genistein inhibition of the growth of human breast cancer cells: Independence from estrogen receptors and the multi-drug resistance gene, Biochem Biophys Res Commun 179:661–667 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    S.E. Bates, N.E. Davidson, E.M. Valverius, C.E. Freter, R.B. Dickson, J.P. Tarn, J.E. Kudlow, M.E. Lippman, D.S. Soloman, Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer: Its regulation by estrogen and its possible functional significance, Molec Endocrinol 2:543–555 (1988).CrossRefGoogle Scholar
  26. 26.
    Y. Berthois, X.F. Dong, P.M. Martin, Regulation of epidermal growth factor receptor by oestrogen and anti-oestrogen in the human breast cancer cell line MCF-7, Biochem Biophys Res Commun 159:126–131 (1988).CrossRefGoogle Scholar
  27. 27.
    J.M. Connally, D.P. Rose, Production of epidermal growth factor receptor and transforming growth factor by the androgen-responsive LNCaP human prostate cancer cell line, Prostate 16:1235–1241 (1990).Google Scholar
  28. 28.
    J.M. Connally, D.P. Rose, Secretion of epidermal growth factor and related polypeptides by the DU-145 human prostate cancer cell line, Prostate 15:177–186 (1989).CrossRefGoogle Scholar
  29. 29.
    A.L.G. Schuurmans, J. Bolt, E. Mulder, Androgens stimulate both growth rate and epidermal growth factor receptor activity of the human prostate tumor cell LNCaP, Prostate 12:55–68 (1988).PubMedCrossRefGoogle Scholar
  30. 30.
    T. Akiyama, J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe, N. Itoh, M. Shibuya, Y. Fukami, Genistein, a specific inhibitor of tyrosine-specific protein kinases, J Biol Chem 262:5592–5595 (1987).PubMedGoogle Scholar
  31. 31.
    A. Gazit, P. Yaish, C. Gilon, A. Levitski, Tyrophostins I: Synthesis and biological activity of protein tyrosine kinase inhibitors, J Med Chem 32:2344–2352 (1989).PubMedCrossRefGoogle Scholar
  32. 32.
    C. Linassier, M. Pierre, J.B. LePecq, J. Pierre, Mechanisms of action in NIH-3T3 cells of genistein, an inhibitor of EGF receptor tyrosine protein kinase activity, Biochem Pharmacol 39:187–193 (1990).PubMedCrossRefGoogle Scholar
  33. 33.
    T.D. Hill, N.M. Dean, L.J. Mordan, A.F. Lau, M.Y. Kanemitsu, A.L. Boynton, PDGF-in-duced activation of phospholipase C is not required for induction of DNA synthesis, Science 248:1660–1663 (1990).PubMedCrossRefGoogle Scholar
  34. 34.
    G. Davidai, A. Lee, I. Schvartz, E. Hazum, PDGF induced tyrosine phosphorylation in osteoblast-like cells: Relevance to mitogenesis, Am J Physiol 263:E205–209 (1992).PubMedGoogle Scholar
  35. 35.
    A. Abler, J.A. Smith, P.A. Randazzo, P.L. Rothenburg, L. Jarrett, Genistein differentially inhibits postreceptor effects of insulin in rat adipocytes without inhibiting the insulin receptor kinase, J Biol Chem 267:3946–3951 (1992).PubMedGoogle Scholar
  36. 36.
    A. Kuriu, H. Ikeda, Y. Kanakura, J.D. Griffin, B. Druker, H. Yagura, H. Kitayama, J. Ishikawa, T. Nishiura, Y. Kanayama, T. Yonezawa, S. Tarui, Proliferation of human myeloid leukemia cell line associated with tyrosine-phosphorylation and activation of the proto-oncogene c-kit product, Blood 78:2834–2840 (1991).PubMedGoogle Scholar
  37. 37.
    I. Merida, E. Diez, G.N. Gaulton, IL-2 binding activates a tyrosine-phosphorylated phosphatidylinositol-3-kinase, J Immunol 147:2202–2207 (1991).PubMedGoogle Scholar
  38. 38.
    R.A. Mufson, J. Szabo, D. Eckert, Human IL-3 induction of c-jun in normal monocytes is independent of tyrosine kinase and involves protein kinase C, J Immunol 148:1129–1135 (1991).Google Scholar
  39. 39.
    E.D. Lloyd, M.W. Wooton, pp42/44MAP kinase is a component of the neurogenic pathway utilized by nerve growth factor in PC12 cells, J Neurochem 59:1099–1109 (1992).PubMedCrossRefGoogle Scholar
  40. 40.
    K. Muroya, Y. Hashimoto, S. Hattori, S. Nakamura, Specific inhibition of NGF receptor tyrosine kinase activity by K-252a, Biochem Biophys Acta 1135:353–356 (1992).PubMedCrossRefGoogle Scholar
  41. 41.
    S. Takagi, M. Daibata, T.J. Last, R.E. Humphreys, D.C. Parker, T. Sairenji, Intracellular localization of tyrosine kinase substrates beneath crosslinked surface immunoglobulins in B cells, J Exp Med 174:381–388 (1991).PubMedCrossRefGoogle Scholar
  42. 42.
    L.K.L. Jung, A.K. Roy, H.R. Chakkalath, CD7 augments T cell proliferation via the inter-leukin-2 autocrine pathway, Cell Immunol 141:189–199 (1992).PubMedCrossRefGoogle Scholar
  43. 43.
    R.L. Geahlen, N.M. Koonchanok, J.L. McLaughlin, D.E. Pratt, Inhibition of protein-tyrosine kinase activity by flavanoids and related compounds, J Nat Prod 52:982–986 (1989).PubMedCrossRefGoogle Scholar
  44. 44.
    A. Okura, H. Arakawa, H. Oka, T. Yoshinari, Y. Monden, Effect of genistein on topoisomerase activity and on the growth of [val 12]Ha-ras-transformed NIH 3T3 cells, Biochem Biophys Res Commun 157:183–189 (1988).PubMedCrossRefGoogle Scholar
  45. 45.
    J. Markowits, J. Couprie, P. Fosse, J.M. Saucier, J. Perre, C. Linassier, A.K. Larsen, J.B. Lepecq, A. Jacqueminsablon, Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II, Cancer Res 49:5111–5117 (1989).Google Scholar
  46. 46.
    Y. Yamashita, S.Z. Kawada, H. Nakano, Induction of mammalian topoisomerase II dependent cleavage by nonintercalative flavanoids, genistein and orobol, Biochem Pharmacol 39:737–744 (1990).PubMedCrossRefGoogle Scholar
  47. 47.
    H. Wei, L. Wei, K. Frenkel, R. Bowen, S. Barnes, Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein, Nutr Cancer 20:1–12 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Stephen Barnes
    • 1
  • Greg Peterson
    • 2
  • Clinton Grubbs
    • 3
  • Ken Setchell
    • 4
  1. 1.Departments of Biochemistry and PharmacologyUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of BiochemistryUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Department of Nutrition SciencesUniversity of Alabama at BirminghamBirminghamUSA
  4. 4.Clinical Mass Spectrometry CenterChildren’s HospitalCincinnatiUSA

Personalised recommendations