Stability of Pure and Aln-Alloyed Al2OC and Influence on Abrasive Properties of Al2O3-A14C3-AlN Materials

  • T. Zambetakis
  • J. M. Lihrmann
  • Y. Larrère
  • M. Daire


The basic results published by Foster et al. (1) in 1956 allowed to understand twenty years after many phenomena linked to high temperature reactivity of alumina against carbon. They called attention to possible syntheses by melting, in a difficult range of temperature, and likewise to three compounds: A14C3 as a carbon bearer in high temperature processes; A1404C as a stable oxycarbide the formation of which is ensured by eutec­tic crystallization ; and Al2OC as a quite particular phase that many la­boratories had expected to find in fumes and condensates rather than in the body of ceramics.


Partial Melting Graphite Matrix Abrasive Property Graphite Resistor Furnace Peritectic Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Foster, G. Long and M.S. Hunter, Reactions between Aluminum Oxide and Carbon. The Al203-A14C3 diagram, J. Am. Ceram. Soc., 39: 1 (1956)CrossRefGoogle Scholar
  2. 2.
    Y. Larrère, B. Willer, J. M. Lihrmann and M. Daire, Stable and Metastable Phase Equilibrium Diagrams of the binary System Al203- A14C3 (in Fr.), Rev. Int. Hautes Tempér. Réfract., 21: 3 (1984)Google Scholar
  3. 3.
    J. M Lihrmann, T. Zambetakis and M. Daire, High Temperature Behaviour of the Aluminum Oxycarbide Al20C in the system Al C3–A1N and with Additions of Aluminum Nitride, J. Am. Ceram. Soc., 72: (1989)Google Scholar
  4. 4.
    V. P. Elyutin, Y. A. Pavlov and V. S. Chelnokov, High Temperature Reactions of A1903 with Carbon, Isv. Akad. Nauk. SSSR, Neorg. Mat., 1973: 1365 (1973)Google Scholar
  5. 5.
    J. L. Henry, J. H. Russel and H.J. Kelly, The System A14C3–A1N-Al203. Powder Forming and Sintering Behaviour. Phase Identification and Refractory Composition Properties, Report of investigations 17320, US Bureau of Mines (1969)Google Scholar
  6. 6.
    J. M. Lihrmann, T. Zambetakis and M. Daire, The Aluminum Monooxycar-bide Al2OC in the system Si-C-Al-O-N: some Thermodynamic Properties, 1st Europ. Ceram. Conf., Elsevier Publ., Maastrich (1989)Google Scholar
  7. 7.
    G. M. Zaretskaya, F. I. Eidel’shtein and M. I. Sokhor, Aluminum Monooxycarbide in Oxysulfide slag, Inorg. Mat. (Engl. Transi.), 8 (1): 70 (1972)Google Scholar
  8. 8.
    I. B. Cutler, P. D. Miller, R. Rafaniello, H. K. Park, D. D. Thompson and K. H. Jack, New Materials in the Si-C-Al-O-N and related Systems, Nature (London) 275: 434 (1978)CrossRefGoogle Scholar
  9. 9.
    F. Schneider, B. Willer and M. Daire, Method of Study and definition of the Abrasion Capacity (in Fr.), Matériaux et Techniques, 8–9: 319 (1984)Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • T. Zambetakis
    • 1
  • J. M. Lihrmann
    • 2
  • Y. Larrère
    • 1
  • M. Daire
    • 1
  1. 1.Ecole Européenne des Hautes Etudes des Industries ChimiquesDépartement Science des MatériauxStrasbourgFrance
  2. 2.Université Paris XIIICNRSVilletaneuseFrance

Personalised recommendations