The Influence of Oxygen Stoichiometry on High-Tc YBa2Cu3Oy Superconductor Properties

  • P. Kostié
  • J.-H. Park


The change of oxygen stoichiometry within YB2Cu3Oy ceramics exists a great influence on electrical properties. This material is p-type, but under some circumstances (in tetragonal phase, below y = 6.5) it can be n-type. In the orthorhombic superconducting phase (y between 6.5 and 6.7) the slope of conductivity versus change of stoichiometry is 1, and above y = 6.7, is 1/4. Frequency measurements of conductivity show grain boundary properties below y = 6.5, and above that value, some behaviour characteristic of superconducting material.


Oxygen Partial Pressure Tetragonal Phase Orthorhombic Phase Superconducting Property Coulometric Titration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Bednorz, K. A. Mueller, K. Takahashi, Science, April (1987) 73.Google Scholar
  2. 2.
    C. W. Chu, P. H. Hor, R. L. Meng, L. Gao, Phys. Rev. Lett., 58(1987)405.Google Scholar
  3. 3.
    P. Kostie, “Philosophies and Prognosis in Ceramics”, “Electroceramic II” Brisel, press).Google Scholar
  4. 4.
    J. D. Jorgensen, M. A. Bendo, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, I. K. Shuller, “Oxygen Ordering and the Orthorhombic-to-Tetragonal Phase Transition on YBa2Cu307x”, Phys Rev. B (in press).Google Scholar
  5. 5.
    M. H. Whangbo, M. Eavin, M. A. Beno, J. M. Williams, “Band Electronic Structure of High-Temperature (Tc90 K)Superconductor Orthorhombic YBa2Cu307”, Inorg.Chem. (in press).Google Scholar
  6. 6.
    J. F. Maruco, C. Noguera, P. Goroshe, G. Kollin, “Thermodynamic Study at High Temperature of the Superconducting System YBa2Cu30z with 67”, J. Mat. Res., (in press).Google Scholar
  7. 7.
    E. G. Derauane, Z. Gabelica, J. L. Bredas, J. M. Andre, Ph. Lambin, A. A. Lucas, J. P. Vigneron, Solid State Comm., 7 (1987) 1061.Google Scholar
  8. 8.
    J. H. Park, P. Kostié, Mat. Lett., 6(1988)393.Google Scholar
  9. 9.
    M. M. Ristid, P. Kostié, “Materials Science - the Base of Progress in New Electronics”, German-Yugoslav Meeting 1989. Stuttgart.Google Scholar
  10. 10.
    J. H. Park, P. Kostié, J. P. Sing, “Electrical Conductivity and Chemical Diffusion in Sintered YBa2Cu30y”, Mat.Lett., (in press).Google Scholar
  11. 11.
    B. Veal, a private communication.Google Scholar
  12. 12.
    C. W. Wert, R. M. Thomson, “Physics of Solids”, McGraham Hill Book, (1964)495.Google Scholar
  13. 13.
    J. Kawamura, R. Sato, S. Mishina, M. Shimoji, Solid State Ionics, 26(1987)155.Google Scholar
  14. 14.
    S. Geller, “Solid Electrolytes”, Topic in Appl. Phys., Springer -Verlag, 21(1977)89.Google Scholar
  15. 15.
    P. Hagenmuller, W. VanGool, “Solid Electrolytes General Principles, Characterisation, Materials, Applications”, Mat. Sci. and Tehn., Academic Press, (1978) 127.Google Scholar
  16. 16.
    H. Deuling, K. Klausman, A. Goetzberger, J. State Electronics, 15(1972)559.Google Scholar
  17. 17.
    K. Funke, J. Klaus, R. E. Lechner, Solid. State Comm., 10 (1974) 1021.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • P. Kostié
    • 1
  • J.-H. Park
    • 1
  1. 1.Center for Multidisciplinary StudyBelgrade University Yugoslavia, and Argonne National LaboratoryUSA

Personalised recommendations