The Influence of Thermal Treatment on Polarization Behaviour of Bi4Ti3O12 Ceramics

  • Č. Jovalekić
  • Lj. Atanasoska
  • V. Petrović
  • M. M. Ristić


The influence of thermal treatment (750–950°C) on microstructure and electric properties of ferroelectric ceramics Bi4Ti3012 has been studied. The shape of monocrystalline grains undergoes changes upon thermal treatment as observed by optical microscopy. We have found that the modified dielectric properties of investigated samples are related to the grain shape transformation. The high value of dielectric permittivity and the appearence of hysteresis have been correlated to the presence of oxygen vacancies within the perovskite structure of Bi4Ti3012. The oxygen vacancies are preferentially sited in the vicinity of bismuth ions as evidenced by x-ray photoemission data. Variations in the valency state of.titanium ions are also possible. The XPS and AES measurements confirm that the surface elemental composition of Bi4Ti3012 ceramics does not deviate from the nominal bulk composition.


Oxygen Vacancy Dielectric Permittivity Spontaneous Polarization Bismuth Oxide Bismuth Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Aurivillius, Mixed Bismuth Oxides with Layer Lattices, Arkiv for kemi 1 (1949) 499.Google Scholar
  2. 2.
    J. F. Dorrian, R. E. Newnham, D. K. Smith, Crystal Structure of Bi 4Tí3012, Ferroelectrics 3 (1971) 17.Google Scholar
  3. 3.
    G. W. Taylor, S. A. Keneman, A. Miller, Depoling of Single-Domain Bismuth Titanate, Ferroelectrics 2 (1971) 11.Google Scholar
  4. 4.
    E. I. Speranskaya, I. S. Rez, L. V. Kozlova, V. M. Skorikov, V. I. Slovov, Sistema okis vismuta dvuokis titana, Neorganicheskie materiali 1 (1965) 232.Google Scholar
  5. 5.
    L. G. van Uitert, L. Egerton, Bismuth Titanate. A Ferroelectrics, Journal of Applied Physics 32 (1961) 959.Google Scholar
  6. 6.
    A. Fouskova, L. E. Cross, Dielectric Properties of Bismuth Titanate, Journal of Applied Physics 41 (1970) 2834.Google Scholar
  7. 7.
    E. V. Sinjakov, E. F. Dudnik, V. M. Duda, V. A. Podolski, M. A. Gorfunkel, Relaksaciya dielektricheskoi pronicaemosti vismuta, Fizika tverdogo tela 16 (1974) 1515.Google Scholar
  8. 8.
    C. B. Sawyer, C. H. Tower, Rochelle Salt as a Dielectric, Physics Review 35 (1930) 269.Google Scholar
  9. 9.
    S. E. Cummins, L. E. Cross, Electrical and Optical Properties of Ferroelectric Bi4Ti3012 Single Crystal, Journal of Applied Physics 39 (1968) 2268.Google Scholar
  10. 10.
    L. E. Davis, N. C. MacDonald, P. W. Palmberg, G. E. Riach, R. E. Weber in: “Handbook of Auger Spectroscopy”, PHI, Eden Prairy NM (1976).Google Scholar
  11. 11.
    V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, A. Goswami, Characterisation of Thin Films of Bismuth Oxide by X-ray Photoelectron Spectroscopy, Journal of Electron Spectroscopy and Related Phenomena 25 (1982) 181.Google Scholar
  12. 12.
    V. S. Dharmadhikari, A. Goswami, Efects of Bi203 Dissociation on the Electrical Properties of Thermally Evaporated Films of Bismuth Oxide, Journal of Vacuum Sciences and Technology Al (1983) 383.Google Scholar
  13. 13.
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder in: “Handbook of X-ray Photoelectrons Spectroscopy”,.E.Mullinberg, ed: Perkin Elmer Physical Electronic Division, Eden Prairy NM (1978).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Č. Jovalekić
    • 1
  • Lj. Atanasoska
    • 2
  • V. Petrović
    • 1
  • M. M. Ristić
    • 1
  1. 1.Center for MultidisciplinaryStudy of Belgrade UniversityBelgradeYugoslavia
  2. 2.Institute of Technical Sciences of SerbianAcademy of Sciences and ArtsBelgradeYugoslavia

Personalised recommendations