Effect of Niobia on the Sintering of SnO2

  • D. Gouvea
  • J. A. Varela
  • C. V. Santilli
  • E. Longo

Abstract

SnO2 crystallizes in tetragonal system with structure similar to rutile and is a n-type semiconductor. The electrical conductivity is mainly due to the existence of point defects (oxygen vacancies) that generate donor electron levels. Its electrical and optical properties have been studied for many technological applications1,2, and thin films and compacts are used as electrodes for electrochemical processes. The grain boundary properties of SnO2 have been studied with respect to its use in gas sensors. SnO2 films are used as electrodes in electron optical devices and as heating elements.

Keywords

Pore Diameter Apparent Density Pore Growth Ceramic Varistor Liquid Phase Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. M. Jarzebski and J. P. Morton, J. Electrochem. Soc. (6), 199–205C (1976).Google Scholar
  2. 2.
    Z. M. Jarzebski and J. P. Morton, J. Electrochem. Soc. (9), 299–310C (1976).Google Scholar
  3. 3.
    L. M. Levinson and N. R. Philipp, J. Appl. Phys. 47 (3), 1117–1122 (1976).CrossRefGoogle Scholar
  4. 4.
    M. F. Yann and W. W. Rhotes, Appl. Phys. Lett. 40 (6), 536–537 (1982).CrossRefGoogle Scholar
  5. 5.
    P. H. Duvigneaud and D. Reinhard, Science of Ceramics 12, 287–292 (1980).Google Scholar
  6. 6.
    M. K. Paria and H. S. Maiti, J. Mat. Sci. 17, 3275–3280 (1982).CrossRefGoogle Scholar
  7. 7.
    A. Watanabe, T. Kikuchi, M. Tsutsume, S. Takenouchi and K. Uchida, J. Am. Ceram. Soc. 66, C 104-C 105 (1983).Google Scholar
  8. 8.
    H. E. Matthews and E. E. Kohnke, J. Phys. Chem. Solids 29, 653–661 (1968).CrossRefGoogle Scholar
  9. 9.
    J. A. Varela, O. J. Whittemore and M. J. Ball, in Sintering185, Ed. G. C. Kuczynski, D. P. Uskokovic, H. Palmour and M. M. Ristic, Plenum Press, New York, p. 259 (1987).Google Scholar
  10. 10.
    E. W. Washburn, Proc. Nat. Acad. Sci. 7, 115 (1921).CrossRefGoogle Scholar
  11. 11.
    J. A. Varela and O. J. Whittemore, Ceramica 28 (152), 337 (1982).Google Scholar
  12. 12.
    E. N. Isupova, T. I. Panova and E. P. Savchenko, Izv. Akad. Nauk. SSSR, Neorg. Mater. 17 (6), 836 (1981).Google Scholar
  13. 13.
    J. A. Varela, E. Longo, N. Barelli, A. S. Tanaka and W. A. Mariano, Ceramica 31 (191) 241–246 (1985).Google Scholar
  14. 14.
    N. Dolet, J. M. Rentz, E. Longo, J. A. Varela, M. Onillon and J. P. Bonnet, submitted to Ceramica (Sao Paulo).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • D. Gouvea
    • 1
  • J. A. Varela
    • 1
  • C. V. Santilli
    • 1
  • E. Longo
    • 2
  1. 1.Instituto de QuimicaUNESPAraraquaraBrazil
  2. 2.Departamento de QuimicaUFSCarSao CarlosBrazil

Personalised recommendations