A Stereology — Based Equation for Isotropic Shrinkage During Sintering by Viscous Flow

  • Hans Eckart Exner
  • Edward A. Giess


A phenomenological shrinkage equation for compacts of a viscous powder is derived using stereological equations to describe the geometry of the pore/solid interface. The geometric assumptions conform to the pore structure observed experimentally over an extended period of shrinkage.


Viscous Flow Glass Powder Pore Shape Linear Shrinkage Height Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Frenkel, “Viscous Flow of Crystalline Bodies Under the Action of Surface Tension,” J. Physics (Moscow), 9: {5} 385–91 (1945).Google Scholar
  2. 2.
    J.K. Mackenzie and R. Shuttleworth, “Phenomenological Theory of Sintering,” Proc. Phys. Soc. London, 62: {12B} 838–52 (1949).Google Scholar
  3. 3.
    W.D. Kingery and M. Berg, “Study of the Initial Sintering Stages of Sintering Solids by Viscous Flow, Evaporation–Condensation, and Self-Diffusion,” J. Appl. Phys., 26: {10} 1205–12 (1955).Google Scholar
  4. 4.
    N.V. Solomin and G.M. Tomilov, “Sintering Kinetics of Vitreous Silica,” Inorg. Mater. (Engl. Transi. of Neorg. Mater., Moscow), 6: {l0} 1631–34 (1970).Google Scholar
  5. 5.
    G.W. Scherer, “Sintering of Low Density Glasses: I, Theory,” J. Am. Ceram. Soc., 60 {5–6} 236–39 (1977).Google Scholar
  6. 6.
    G.W. Scherer, “Sintering of Low-Density Glasses: III, Effect of a Distribution of Pore Sizes,” ibid. pp 243–46.Google Scholar
  7. 7.
    G.W. Scherer, “Viscous Sintering of a Bimodal Pore-Size Distribution,” J.Am. Ceram. Soc., 67: {11} 709–15 (1984).Google Scholar
  8. 8.
    G.W. Scherer, “Viscous Sintering of Inorganic Gels”, in: Surface and Colloid Science, Vol. 14, Plenum Publ. Corp., New York, London (1987) pp. 265–300.CrossRefGoogle Scholar
  9. 9.
    E.l-I. Aigeltinger and 1I.E. Exner, “Stereological Characterization of the Interaction between Interfaces and its Application to the Sintering Process,” Metall. Trans. A {3} 421–24 (1977).Google Scholar
  10. 10.
    E. E. Underwood, Quantitative Stereology, Addison Wesley, Reading, 1970.Google Scholar
  11. 11.
    E.A. Giess, J.P. Fletcher and L.W. Herron, “Isothermal Sintering of Cordierite-Type Glass Powders,” J. Am. Ceram. Soc., 77: {8} 549–52 (1984).Google Scholar
  12. 12.
    E.A. Giess and S.H. Knickerbocker, “Viscosity of MgO–Al2O,–SiO2–B2O,–P,O5 Cordierite-Type Glasses”, J. Mat. Sci. Lett., 4: {7} 835–37 (1985).Google Scholar
  13. 13.
    I.B. Cutler and R.E. Henrichsen, “Effect of Particle Shape on the Kinetics of Sintering of Glass,”.1. Am. Ceram. Soc., 51: {10} 604–5 (1968).Google Scholar
  14. 14.
    E.A. Giess, C.F. Guerci, G.F. Walker and S.H. Wen, “Isothermal Sintering of Spheroidized Cordierite-Type Glass Powder,” Comm. Am. Ceram. Soc., 68: {12) C-328–29 (1985).Google Scholar
  15. 15.
    R.T. De Hoff, “ The Dynamics of Microstructural Changes”, in: Treatise on Materials Science and Technology, Vol. 1 (Ed. I. 1. Ilerman). Academic Press, New York, London (1972) pp. 247–292.Google Scholar
  16. 16.
    H.E. Exner, “Principles of Single Phase Sintering”, Rev. Powder Metall. Phys. Ceram., 1: {1–4} 7–251 (1979).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Hans Eckart Exner
    • 1
    • 2
  • Edward A. Giess
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA
  2. 2.Institut für WerkstoffwissenschaftenMax-Planck Institut für MetallforschungStuttgartGermany

Personalised recommendations