Advertisement

Stereological Theory of Sintering

  • R. T. DeHoff

Abstract

A geometrically general theory for microstructural evolution during solid state sintering is under development. The theory uses the global geometric properties of stereology to characterize the geometric state of the microstructure. The time evolution of these properties is related to the distribution of interface velocities on the pore-solid interface and the distribution of vacancy annihilation rates in grain boundaries through the geometrically general kinematic equations of stereology. The evaluation of local interface velocities via assumed mechanisms controlling mass transport completes the structure of the approach.

An example of a test of this theory is presented in an analysis of densification kinetics in the late stages of sintering of nickel powder.

Keywords

Pore Surface Volume Diffusion Flux Line Total Curvature Nickel Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.C. Kuczynski. Trans AIME Vol. 185, 169–178 (1949).Google Scholar
  2. G. C. Kuczynski. Journal Appl. Phys. Vol. 20, 1160 (1949).Google Scholar
  3. W. D. Kingery and M. Berg. J. Appl. Phys. Vol.26, 1205 (1955).Google Scholar
  4. R. L. Coble. J. Appl. Phys. Vol. 32, 787 (1961).Google Scholar
  5. 5.
    L. Berrin and D. L. Johnson. In Sintering and Related Phenomena, G.C.Kuczynski, N.A. Hooton and C. F. Gibbon, Eds, Gordon and Breach, New York (1967) 369–392.Google Scholar
  6. 6.
    F. N. Rhines. Plansee Proceedings, 3rd Seminar Ruette, Tyrol, (1958) 38.Google Scholar
  7. 7.
    E. H. Aigeltinger and R. T. DeHoff. Met. Trans. Vol. 6A 1853 (1975).Google Scholar
  8. 8.
    F. N. Rhines and R. T. DeHoff. In Modern Developments in Powder Metallurgy, Plenum Press, New York, (1971) 193.Google Scholar
  9. 9.
    F. N. Rhines and R. T. DeHoff, “Channel network decay in sintering”, in Proc. Sixth Intl Conf. on Sintering and Related Phenomena, Including Catalysis, G.C. Kuczynski, Ed., Plenum Press (1984) 43.Google Scholar
  10. 10.
    W. Beere’. Acta Met. Vol. 22, 131 (1975).Google Scholar
  11. 11.
    R. L. Eadie, G. C. Weatherly and K.T. Aust. Acta Met. MdL 26, 759 (1978).CrossRefGoogle Scholar
  12. 12.
    G. C. Kuczynski. In Ceramic Microstructures–‘76, R. M. Fulrath and J. A. Pask, Eds, Westview Press, Boulder CO, (1977) 233–245.Google Scholar
  13. 13.
    R. T. DeHoff, “ A cell model for microstructural evolution in sintering”, in Proc. Sixth Intl Conf. on Sintering and Related Phenomena, Including Catalysis, G.C. Kuczynski, Ed., Plenum Press (1984) 97.Google Scholar
  14. 14.
    E. E. Underwood. Quantitative Stereology, Addison Wesley, Reading, MS (1970).Google Scholar
  15. 15.
    R. T. DeHoff and F. N. Rhines. Quantitative Microscopy, McGraw-Hill, New York, (1968).Google Scholar
  16. 16.
    R. T. DeHoff. Metals Forum. Vol. 5, 4 (1982)Google Scholar
  17. 17.
    R. T. DeHoff. In: Encyclopedia of Materials Science. Edited by M. Bever. Pergamon Press, Oxford; 1982b; 1127–1129Google Scholar
  18. 18.
    R. T. DeHoff. Acta Met. Vol. 32, 43 (1984).CrossRefGoogle Scholar
  19. 19.
    R. T. DeHoff. Sci. of sintering Vol. 16, 97 (1984).Google Scholar
  20. 20.
    R. T. DeHoff. Acta Met. (1989) In press.Google Scholar
  21. 21.
    F. N. Rhines, R. A. Rummel, H. P. LaBuff and R. T. DeHoff. In Modern Developments in Powder Metallurgy, Volume 1. Plenum Press (1966) 53.Google Scholar
  22. 22.
    N. J. Shaw and R. J. Brook. J. Am. Ceram. Soc. Vol. 69, 107 (1986).Google Scholar
  23. 23.
    W. Vasconcelos, Doctoral Dissertation, University of Florida (1989).Google Scholar
  24. 24.
    S. M. Her, Doctoral Dissertation, University of Florida (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • R. T. DeHoff
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations