Dynamic Compaction Of Amorphous Ni78P22

  • B. Mihelič
  • B. Šerbedžija
  • V. Petrovič
  • M. V. Šušie
  • D. P. Uskokovič

Abstract

The changes ocuring in the structure of dynamically compacted amorphous Ni78P22 powder in the pressure range 50–150 kbar were studied. Powder was compacted by shock waves obtained during explosion of high explosives. At 50 kbar Ni78P22 does not crystallize, but increases in pressure cause both crystallization, which is completed at 150 kbar, and the formation of stable crystalline Ni and Ni3P phases. The minimum porosity was obtained at 70 kbar. The mechanism of hydrogen sorption seems to be the same on dynamically compacted samples as well as on the initial amorphous powder. Any shift of crystallization temperature of the amorphous phase remaining after dynamic compaction was not detected, but the activation energy for crystallization was somewhat lower (— 150 kJ/mol) than the value corresponding to the crystallization of unshocked amorphous powder (212 kJ/mol). These data may indicate that shock waves cause a certain “destabilization” of amorphous Ni78P22.

Keywords

Shock Wave Amorphous Phase Differential Scanning Calorimeter Amorphous Powder High Explosive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Zdujié, D. Uskokovie, “Rapidly solidified crystalline and amorphous powders-problems and perspectives” in SINTERING ‘87, Ed. S. Somiya et al., Publ. Elsevier, 1988, 1504.Google Scholar
  2. 2.
    S. A. Miller, “Amorphous metal powder: production and consolidation”, in AMORPHOUS METALLIC ALLOYS, Ed. F.E. Luborsky, Butterworths, 1983, 506–521.Google Scholar
  3. 3.
    R. Prümmer, “Explosive compaction of powders-state of art”, in HIGH ENERGY RATE FABRICATION, Proc. of Ninth Intern. Conf., Novosibirsk, Aug. 18–22, 1986, 169–178.Google Scholar
  4. 4.
    G. E. Duvall, R. A. Graham, “Phase transition under shock wave loading”, Rev.Mod.Phys., 49 (1977),,523–579.Google Scholar
  5. 5.
    D. G. Morris, “Compaction and mechanical properties of metallic glass”, Met. Sci. J., 14 (1980), 215–220.CrossRefGoogle Scholar
  6. 6.
    O. V. Roman, V. G. Gorobcov, B. S. Mitin, V. A. Vasilev, “Struktura i svoistsva amorphnih materialov na zheleznoi osnove”, Porosh. Metal., No.6, Minsk, Vischaya shkola, 1982, 8–13.Google Scholar
  7. 7.
    V. Roman, G. A. Adadurov, Yu. V. Baldohin, A. P. Bogdanov, Yu. N. Voloshin, V. G. Gorobcov, A. M. Kaplan, M. Yu. Messiner, I. M. Pikus, “Pressovanie poroshkov amorphnih splavov v dinamicheskih uslovyah”, Porosh. Metal., No. 5 (1984), 17–23.Google Scholar
  8. 8.
    V. F. Nesterenko, A.V. Muzikantov, “Ocenka uslovya sohraneniya amorphnoi strukturi materialov pri kompaktirovanii vzrivom” Fiz. Gorenya i Vzryva No. 2 (1985), 120–126.Google Scholar
  9. 9.
    V. F. Nesterenko, “Vozmozhnosti udarno-volnovih metodov polucheniya i kompaktirovaniya bistrozakalenih materialov”, ibid., No. 6 (1985), 85–98.Google Scholar
  10. 10.
    A. A. Deribas, “Obrabotka materialov energiei vzryva”, ibid., No. 5 (1987), 148–158.Google Scholar
  11. 11.
    V. F. Nesterenko, S. A. Pershin, E. D. Tabachnikova, “Temperaturnaya zavisimost prochnosti na szhatie materilov, poluchenih impulsnim pressovaniem bistrozakalennih poroshkov”, ibid., No. 4 (1988), 125–129.Google Scholar
  12. 12.
    N. N. Gorshkov, E. Y. Ivanov, A. V. Plastinin, V.V. Silvestrov, T. M. Sobolenko, T. S. Teslenko, “Vzrivnoe kompaktirovanie amorphnogo poroshka Cu-Sn polushenogo metodom mechanicheskogo splavleniya”, ibid., No. 2 (1989), 125–133.Google Scholar
  13. 13.
    M. V. Susie, D. P. Uskokovie, “Crystallization kinetics of amorphous Ni78P22 powders and hydrogen adsorption on both amorphous and crystal alloy powders”, J. Mater. Sci., 23 (1988), 4076–4080.CrossRefGoogle Scholar
  14. 14.
    V. D. Karpusha, V. N. Korzhik, Yu. A. Kunickii, L. V. Poperenko, S. L. Revo, I. A. Shakevich, “Opticheskoe pogloschenie i elektronnaya struktura amorphnih splavov Ni81P19 i Ni3B”, Metallophisika 10 (1988), 61–66.Google Scholar
  15. 15.
    R. Prümmer, “Dynamic compaction of powders” in EMERGENT PROCESS METHODS FOR HIGH-TECHNOLOGY CERAMICS Mat. Sci. Res., 17 (1984), 505–517.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • B. Mihelič
    • 1
  • B. Šerbedžija
    • 1
  • V. Petrovič
    • 1
  • M. V. Šušie
    • 2
  • D. P. Uskokovič
    • 1
  1. 1.Institute of Technical SciencesSerbian Academy of Sciences and ArtsBelgradeYugoslavia
  2. 2.Institute of Physical ChemistryFaculty of Sciences BelgradeYugoslavia

Personalised recommendations