Principles of Atomization

  • W. A. Kaysser
  • K. Rzesnitzek


Basic principles of materials science and physics which apply to the formation and solidification of small droplets during gas and water atomization of metals and alloys are described. Several mechanisms of melt stream disintegration are presented, including melt stripping and subsequent disintegration due to Taylor instabilities. The cooling rates of the droplets and the extent of undercooling are estimated. Some aspects of homogeneous and heterogeneous nucleation as well as the microstructural variations caused by different solidification front velocities are outlined and compared with experiments with Cu—Sn alloys.


Heat Transfer Coefficient Growth Velocity Rapid Solidification Biot Number Taylor Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /1/.
    S. Takayo, Innovations in Ferrous Powders and their Production, in “Powder Metallurgy — State of the Art”, (eds.) W.J.Huppmann, W.A.Kaysser and G.Petzow, Schmid—Verlag, Freiburg,7–28(1986).Google Scholar
  2. /2/.
    P.Hellmann and P.Billgren, Commercial Gas Atomization, in “Atomization and Processes: Current and Future”, (eds.) A.Lawley and E.Klar, MPIF, Princeton, 33–50(1984).Google Scholar
  3. /3/.
    E.Klar, Gas and Water Atomization, in “Metals Handbook, Ninth Edition, Volume 7, Powder Metallurgy”, (coordinator) E.Klar, American Society for Metals, Metals Park, Ohio 44073, 25–39(1984).Google Scholar
  4. /4/.
    W.A.Kaysser, K.Rzesnitzek and G.Petzow, Atomized Powders with Reduced Microstructure Variations, in “Modern Developments in Powder Metallurgy”, (eds.) P.U.Gummeson and D.A.Gustayson, MPIF, Princeton, NJ, 18–21, (1988).Google Scholar
  5. /5/.
    M.D.Oh and M.L.Corradini, A PropagationExpansion Model for Large Scale Vapor Explosions, Nuclear Science and Engineering 95, 225–240 (1987).Google Scholar
  6. /6/.
    E.Berg and G.Fróhlich, Modell zur Beschreibung von Entrapment—Interaktionen, IKE 2–80, Universität Stuttgart, April (1987).Google Scholar
  7. /7/.
    G.I.Taylor, The Instability of Liquid Surface when Accelerated in a Direction Perpendicular to their Planes I., Proc.Roy.Soc., 202A, 192–196 (1950).Google Scholar
  8. /8/.
    H.W.Emmons, C.T.Chang, and B.C.Watson, Taylor Instabilities of Finite Surface Waves, J.Fluid Mech. 7, 177–193 (1960).Google Scholar
  9. /9/.
    K.Halada, K.D.Rzesnitzek, W.A.Kaysser, and G.Petzow, Effect of Superheating on Water Atomization, Powder Metallurgy International, 21, 17–21 (1989).Google Scholar
  10. /10/.
    G.Citran, Powder Metallurgy 29, 277–280 (1986).Google Scholar
  11. /11/.
    B.See and G.Johnston, Interactions between Nitrogen Jets and Liquid Lead and Tin Streams, Powder Technology 21, 119–133 (1978).Google Scholar
  12. /12/.
    W.Reinecke and G.Waldman, Shock Layer Shattering of Cloud Drops in Reentry Flight, AIAA 13th Aerospace Sciences Meeting, AIAA Paper, 75–152(1973).Google Scholar
  13. /13/.
    T.Takeda, in “Proceedings of Lecture Meeting at National Research Institute for Metals”, Japan, 13th Nov. 1985, cited in 1.Google Scholar
  14. /14/.
    G. de Jarlais, An Experimental Study of Inverted Annular Flow Hydrodynamics Utilizing an Adiabatic Simulation, NUREGCR3339, ANL-83–44, Argonne NL, Illinois, March 1983.Google Scholar
  15. /15/.
    A.Lawley, Atomization of Speciality Alloy Powders, J.Metalls, 33, 13–17 (1981).Google Scholar
  16. /16/.
    S.A. Miller, Close Coupled Gas Atomization of Metal Alloys, in “Horizons of Powder Metallurgy”, (eds.) W.A.Kaysser and W.J.Huppmann, Verlag Schmid, Freiburg, 29–32(1986).Google Scholar
  17. /17/.
    I.E. Anderson, J.D. Ayers, R.G. Hughes and W.P. Robey, Gas Flow Effects on Atomization Performance, presented at 1984 AIME meeting Los Angeles (1984).Google Scholar
  18. /18/.
    G.Rai, E.Laverina and N.J.Grant, Powder Size and Distribution in Ultrasonic Gas Atomization, Journal of Metals, 37, 22–26 (1985).Google Scholar
  19. /19/.
    M.Búrger, E.von Berg, S.H.Cho and A.Schatz, Analysis of Fragmentation Processes in Gas and Water Atomization Plants for Process Optimization Purposes; Part I: Discussion of the Main Fragmentation Processes in Gas and Water Atomization Procedures, Powder Metallurgy International, 21(1989), in print.Google Scholar
  20. /20/.
    D.Bradley, On the Atomization of Liquids by High—Velocity Gases, J.Apal.Phys D6,1724–1736(1973); D6, 2267–2272 (1973).Google Scholar
  21. /21/.
    M.Búrger, E.von Berg, S.H.Cho and A.Schatz, Development of Optimized Atomization Procedures for Metal Powders by Coupling of Numerical Modelling and Experiments, presented at ILASS Europe ‘89 5th Annual Conference, July 3–4, Bremen.Google Scholar
  22. /22/.
    M.Pilch, C.Erdman and A.Reynolds, Acceleration Induced Fragmentation of Liquid Drops, U.S. Nuclear Regulatory Commission,1981, Report number: NUREGCR-2247.Google Scholar
  23. /23/.
    P.R.Roberts, Rotating Electrode Process, in “Metals Handbook, Ninth Edition, Volume 7, Powder Metallurgy”, (coordinator) E.Klar, American Society for Metals, Metals Park, Ohio 44073, 39–41(1984).Google Scholar
  24. /24/.
    P.Duwez, R.H.Willens and W.Klement, J.Appl.Phys., 31, 1136–1137 (1960).Google Scholar
  25. /25/.
    T.W.Clyne, R.A.Ricks and P.J.Goodhew, The Production of Rapidly—Solidified Aluminum Powder by Ultrsonic Gas Atomization. Part I: Heat and Fluid Flow, Int.Jour.Rauid Solidification, 1, 59–80 (1984).Google Scholar
  26. /26/.
    H.S.Carlslaw and J.C.Jaeger, Heat of Conduction in Solids, Oxford Univ. Press, (1959).Google Scholar
  27. /27/.
    R.Patterson II, The Modelling of Rapidly Solidified Powders.Google Scholar
  28. /28/.
    W.A. Kaysser, K.Rzesnitzek, R.Laag, J.Wachter, and G. Petzow, Rapid Solidification by Optimized Gas Atomization, in “Horizons of Powder Metallurgy”, (eds.) W.A.Kaysser and W.J.Huppmann, Verlag Schmid, Freiburg, 84–88(1986).Google Scholar
  29. /29/.
    W.H.McAdams, “Heat Transmission”, McGraw—Hill, Series in Chemical Engineering, New York (1954).Google Scholar
  30. /30/.
    Gh.Matei, E.Bicsak, Z.Sparchez, and W.A. Kaysser, Melt Disintegration During Ar—Atomization of Ni—Cr—B—Si Alloys, in “Horizons of Powder Metallurgy”, (eds.) W.A.Kaysser and W.J.Huppmann, Verlag Schmid, Freiburg, 33–36(1986).Google Scholar
  31. /31/.
    I.E. Anderson, R.A.Masumura, B.B.Rath, and C.L.Vold, in “Rapid Solidification Processing, Principles and Technologies,lll”, (ed.) R.Mehrabian, NBS, Washington DC, 178(1983).Google Scholar
  32. /32/.
    S. K.Bhattacharyya, J. H.Perepezko, T. B.Massalski, Nucleation during Continuos Cooling — Application to Massive Transformations, Acta Metall., 22, 879 (1974).Google Scholar
  33. /33/.
    I.Dustin and W.Kurz, Modeling of Cooling Curves and Microstructures During Equiaxed Dendritic Solidification, Z.Metallkde, 5, 265–273 (1986).Google Scholar
  34. /34/.
    M.Flemings, “Solidification Processing”, McGraw—Hill Series in Materials Science and Engineering, New York, 1974.Google Scholar
  35. /35/.
    J.H. Perepezko, Nucleation in Metallic Melts, in “Keimbildung, Schnelle Erstarrung, Nucleation, Rapid Solidification”, (ed.) P.R. Sahm, Gießerei Institut RWTH—Aachen, 1415 März 1983, 9–33(1983).Google Scholar
  36. /36/.
    R.Mehrabian, Relationship of Heat Flow to Structure in Rapid Solidification Processing, in “Rapid Solidification Processing”, Int. Conference on Rapid Solidification Processing, November 13–16, Reston, USA (1987).Google Scholar
  37. /37/.
    C.Caesar, U.Köster, R.Willnecker and D.M.Herlach, Comparison of Microstructures and Solidification Behaviour of Melt—Spun Cu—Ni Ribbons and Bulk Undercooled Cu—Ni Alloys Mat.Sci.Eng. 98, 339–342 (1988).Google Scholar
  38. /38/.
    J.C.Baker and J W.Cahn, Thermodynamics of Solidification, in “Solidification”, ASM publication (1971).Google Scholar
  39. /39/.
    Y.Aoumer, Einfluß der Kornfeinung von G—CuSn10 auf den Erstarrungsablauf und die mechanischen Eigenschaften“, Dissertation, TU Berlin (1984).Google Scholar
  40. /40/.
    W.J. Boettinger, J.H.Perepezko, Fundamentals of Rapid Solidification, in “Rapidly Solidified Crystalline Alloys”, (eds.) S.K.Das, B.H.Kear and C.M.Adam, Metallurgical Society, 21–58(1985).Google Scholar
  41. /41/.
    I.E.Anderson and M.P.Kemppainen, Undercooling Effects in Gas Atomized Powders, in “Undercooled Alloy Phases”, (eds.) E.W.Collins and C.C.Koch, Metallurgical Society, 269–285(1986).Google Scholar
  42. /42/.
    R. Mehrabian, Rapid Solidification, Int.Met.Rev., 27, 185–208 (1982).Google Scholar
  43. /43/.
    J.Poetschke, Spacelab—Nutzung, Status—Seminar 1980 des BMFT, DFVLR—Bericht 80–02, 141–168(KFI—UB 02580).Google Scholar
  44. /44/.
    G.M.Pound, Perspectives on Nucleation, Met.Trans., 16A, 487–502 (1985).Google Scholar
  45. /45/.
    J.S.Huang and E.N.Kaufmann, Nucleation, Growth, and Glass Formation in an Electron—Beam Surface—Processed Cu47Zr53 Alloy, J.Mater.Res. 3(2),238–247(1988).Google Scholar
  46. /46/.
    S.R.Coriell and D.Turnbull, Relative Roles of Heat Transport and Interface Rearrangement Rates in the Rapid Growth of Crystals in Undercooled Melts, Acta. Metall. 30, 2135–2139 (1982).Google Scholar
  47. /47/.
    C.G.Levi, The Evolution of Microcrystalline Structures in Supercooled Metal Powders, Met.Trans., 19A, 699–708 (1988).Google Scholar
  48. /48/.
    K.Rzesnitzek, Einfluß von Abkühlgeschwindigkeit und Unterkühlung auf das Gefüge von verdUstem Cu— und Cu—Sn—Legierungen, Ph.D.Thesis,TU Berlin (1989).Google Scholar
  49. /49/.
    J.W.Miles, On the Generation of Surface Waves by Shear Flow, J.Fluid Mech. 3,185–204(1957); 6,568–582(1958); 7,422–448(1960); 13, 433–448 (1961).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • W. A. Kaysser
    • 1
  • K. Rzesnitzek
    • 1
  1. 1.Pulvermetallurgisches LaboratoriumMax—Planck—Institut für MetallforschungStuttgart 80Germany

Personalised recommendations