Sintering of Ceramics

  • Carol A. Handwerker
  • John E. Blendell
  • Robert L. Coble

Abstract

The primary goal of sintering research is the controlled manipulation of microstructure. Out of the entire range of microstructures which are theoretically possible, each material system will be able to achieve only a subset of them, depending on the intrinsic material properties. Within these material constraints, the aim is to produce microstructures which enhance specific properties. Our understanding of the relationships among materials processing, microstructure, and properties is just beginning to emerge, and is producing unexpected results. For example, in a recent study of toughness in Al2O3 by Bennison and Lawn, microstructures with platy grains and a bimodal grain size distribution in undoped Al2O3 exhibited a greater resistance to crack propagation than did the more uniform microstructures in MgO-doped Al2O3 [1]. As a result of this emerging understanding, the focus of sintering science is changing from the modification of microstructures in incremental ways for correspondingly incremental improvement in properties to more effectual manipulation of microstructures to optimize properties. However, the production of the optimum microstructure will be dependent on both the material and the application and may require radically different processing routes for different materials. In this review paper, we have examined the research in sintering science over the past five years which has advanced the goal of microstructure manipulation.

Keywords

Creep Rate Acta Metall Barium Titanate Rigid Inclusion Sinter Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Bennison and B. R. Lawn, “Role of interfacial grain-bridging sliding friction in the crack-resistance and strength properties of non-transforming ceramics,” submitted to Acta Metall.Google Scholar
  2. 2.
    H. K. Bowen, “Basic Research Needs on High-Temperature Ceramics for Energy Applications,” Mat. Sci. Eng. 44 1–56 (1980).CrossRefGoogle Scholar
  3. 3.
    H. E. Exner, “Neck Shape and Limiting GBD/SD Ratios in Solid State Sintering,” Acta Metall. 35, 587–591 (1987).CrossRefGoogle Scholar
  4. 4.
    W. S. Coblenz, J. M. Dynys, R. M. Cannon, and R. L. Coble, “Initial Stage Sintering Models: A Critical Assessment,” in: Sintering Processes, ed. G. C. Kuczynski, Plenum Press, 1980.Google Scholar
  5. 5.
    W. C. Carter, R. M. Cannon,“Sintering Microstructures: Instabilities and the Interdependence of Mass Transport Mechanisms,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  6. 6.
    R. M. Cannon, W. C. Carter, “Interplay of Sintering Microstructures, Driving Forces, and Mass Transport Mechanisms,” J. Amer. Ceram. Soc. 72 [8] 1550–1555 (1989).CrossRefGoogle Scholar
  7. 7.
    K. R. Venkatachari, R. Raj, “Shear Deformation and Densification of Powder Compacts, ” 69 [6] 499–506 (1986).Google Scholar
  8. 8.
    M. N. Rahaman, L. C. De Jonghe, “Effect of Shear Stress on Sintering,” J. Amer. Ceram. Soc. 69 [1] 53–58 (1986).CrossRefGoogle Scholar
  9. 9.
    R. K. Bordia, Sintering of Inhomogeneous or Constrained Powder Compacts: Modelling and Experiments, Ph.D Thesis, Cornell University, Ithaca, NY, 1986.Google Scholar
  10. 10.
    T. Cheng, R. Raj, “Measurement of the Sintering Pressure in Ceramic Films,” J. Amer. Ceram. Soc. 71, [4] 276–80 (1988).CrossRefGoogle Scholar
  11. 11.
    L. C. DeJonghe, M. N. Rahaman, “Sintering stress of homogeneous and heterogeneous powder compacts,” Acta Metall. 36 223–229 (1988).CrossRefGoogle Scholar
  12. 12.
    E. G. Liniger, R. Raj, “Packing and Sintering of Two-Dimensional Structures Made from Bimodal Particle Size Distributions,” J. Amer. Ceram. Soc. 70 [11] 843–849 (1987).CrossRefGoogle Scholar
  13. 13.
    E. G. Liniger, “Spatial Variations in the Sintering Rate of Ordered and Disordered Particle Structures,” J. Amer. Ceram. Soc. 71 [9] C-408- C-410 (1988).Google Scholar
  14. 14.
    M. W. Weiser, L. C. De Jonghe, “ Rearrangement During Sintering in Two-Dimensional Arrays,” J. Amer. Ceram. Soc. 69 [11] 822–26 (1986).CrossRefGoogle Scholar
  15. 15.
    R. Raj, R. K. Bordia, “Sintering behavor of bi-modal powder compacts,” Acta Metall. 32 1003–1020 (1984).CrossRefGoogle Scholar
  16. 16.
    T.-S. Yeh, M. D. Sacks, “Effect of Particle Size Distribution on the Sintering of Alumina,” J. Amer. Ceram. Soc. 71 [12] C-484-C-487 (1988).Google Scholar
  17. 17.
    T.-S. Yeh, M. D. Sacks, “Effect of Green Microstructure on Sintering of Alumina,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  18. 18.
    M.A. Occhionero, J.W. Halloran, “The Influence of Green Density Upon Sintering,” in: Sintering and Heterogeneous Catalysis, edited by G.C. Kuczynski, Albert E. Miller„ Gordon A. Sargent, Plenum Press (New York), Materials Science Research, Vol. 16.Google Scholar
  19. 19.
    C. P. Cameron, R. Raj, “Grain-Growth Transition During Sintering of Colloidally Prepared Alumina Powder Compacts,” J. Amer. Ceram. Soc. 71 [12] 1031–35 (1988).CrossRefGoogle Scholar
  20. 20.
    W.H. Rhodes, “Agglomerate and Particle Size Effects on Sintering Yttria-Stabilized Zirconia,” J. Amer. Ceram. Soc. 64 [1] 19–22 (1981).CrossRefGoogle Scholar
  21. 21.
    D. J. Sordelet, M. Akinc, “Sintering of Monosized, Spherical Yttria Powders,” J. Amer. Ceram. Soc. 71 [12] 1148–53 (1988).CrossRefGoogle Scholar
  22. 22.
    D. J. Sordelet, M. Akinc,“Sintering of Monosized, Spherical Y203 Powders,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  23. 23.
    E. A. Barringer, H. K. Bowen, “Formation, Packing, and Sintering of Monodis-perse TiO2 Powders,” J. Amer. Ceram. Soc. 65 [12] C-199-C-201 (1982).Google Scholar
  24. 24.
    L. H. Edelson, A. M. Glaeser, “Role of Particle Substructure in the Sintering of Monosized Titania,” J. Amer. Ceram. Soc. 71 [4] 225–35 (1988).CrossRefGoogle Scholar
  25. 25.
    T. M. Shaw, B. A. Pethica, “Preparation and Sintering of Homogeneous Silicon Nitride Green Compacts,” J. Amer. Ceram. Soc. 69 [2] 88–93 (1986).CrossRefGoogle Scholar
  26. 26.
    Y. Hirato, I. A. Aksay; “Colloidal Consolidation and Sintering Behavior of CVDProcessed Mullite Powders,” Mat. Sci. Res. Vol. 21 Ceramic Microstructures ‘86: Role of Interfaces 611–621 (1988).Google Scholar
  27. 27.
    N. Otsuka,“Sintering of Monodisperse Particles, Seramikkusu, 22 473–8 (1987).Google Scholar
  28. 28.
    J. Zhao, M. P. Harmer, “Effect of Pore Distribution on Microstructure Development: II, Matrix Pores,” J. Amer. Ceram. Soc. 71 [2] 113–20 (1988).CrossRefGoogle Scholar
  29. 29.
    J. Zhao, M. P. Harmer, “Effect of Pore Distribution on Microstructure Development: II, First-and Second-Generation Pores,” J. Amer. Ceram. Soc. 71 [7] 530–39 (1988).CrossRefGoogle Scholar
  30. 30.
    T. Ikegami, “Microstructural Development during Intermediate-and Final-Stage Sintering,” Acta Meta.. 35 667–675 (1987).CrossRefGoogle Scholar
  31. 31.
    A. D. Rollett, D. J. Srolovitz, and M. P. Anderson,“Simulation and Theory of Abnormal Grain Growth-Anisotropic Grain Boundary Mobilities,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  32. 32.
    N. J. Shaw, R. J. Brook, “Structure and Grain Coarseing During the Sintering of Alumina,” J. Amer. Ceram. Soc. 69 107–110 (1986).CrossRefGoogle Scholar
  33. 33.
    T. Yamaguchi, H. Kosha, “Sintering of Acicular Fe2O3 Powder,” J. Amer. Ceram. Soc. 64 C-84 - C-85 (1981).Google Scholar
  34. 34.
    H. Kuno, M. Tsuchiya, Cumulative pore volume difference (CPVD) in the study of pore changes during compaction or sintering, Powder Technology, 52 187–92 (1987).CrossRefGoogle Scholar
  35. 35.
    K. A. Berry, M. P. Harmer, “Effect of MgO Solute on Microstructure Development in Al2O3,” J. Amer. Ceram. Soc. 69 [2] 143–49 (1986).CrossRefGoogle Scholar
  36. 36.
    M. J. Readey, D. W. Readey, “Sintering TiO2 in HCl Atmospheres,” J. Amer. Ceram. Soc. 70, [12] C-358-C-361 (1987).Google Scholar
  37. 37.
    M. J. Readey, D. W. Readey, “Sintering of ZrO2 in HCl Atmospheres,” J. Amer. Ceram. Soc. 69 [7] 580–82 (1986).CrossRefGoogle Scholar
  38. 38.
    T. Quadir, D. W. Readey, “Microstructure Development of Zinc Oxide in Hydrogen,” J. Amer. Ceram. Soc. 72 [2] 297–302 (1989).CrossRefGoogle Scholar
  39. 39.
    J. Lee, D.W. Readey, “Microstructure Development of Fe2O3 in HCl Vapor,” in:Sintering and Heterogeneous Catalysis,edited by G.C. Kuczynski, Albert E. Miller, and Gordon A. Sargent, Plenum Press (New York), Materials Science Research, Vol. 16.Google Scholar
  40. 40.
    D.W. Readey, J. Lee and T. Quadir, “Vapor Transport and Sintering of Ceramics,” in: Sintering and Heterogeneous Catalysis, edited by G.C. Kuczynski, Albert E. Miller, and Gordon A. Sargent, Plenum Press (New York), Materials Science Research, Vol. 16.Google Scholar
  41. 41.
    D. W. Readey,“Vapor Transport and Sintering,” in: Ceramic Transactions Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  42. 42.
    L. C. DeJonghe, M. N. Rahaman, M.-Y. Chu, and R. J. Brook, “Effect of Heating Rate on Sintering and Coarsening,” submitted to J. Amer. Ceram. Soc.Google Scholar
  43. 43.
    T. J. Garin, H. K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Amer. Ceram. Soc. 70 C315 - C317 (1987).CrossRefGoogle Scholar
  44. 44.
    L. C. De Jonghe, M. N. Rahaman, and M. Lin, “The Role of Powder Packing in Sintering,” in: Ceramic Microstructures ‘86, Role of Interfaces, Ed. J. A. Pask and A. G. Evans, Plenum Press, New York, 1987, 447–454.CrossRefGoogle Scholar
  45. 45.
    W. C. Carter, A. M. Glaeser, “The Morphological Stability of Continuous Intergranular Phases: Thermodynamic Considerations,” Acta Metall. 35 237–45 (1987).CrossRefGoogle Scholar
  46. 46.
    F.F. Lange, “Sinterability of Agglomerated Powders,” J.Amer.Ceram.Soc. 67 83–89 (1984).CrossRefGoogle Scholar
  47. 47.
    C. H. Hsueh, A. G. Evans, and R. L. Coble, “Microstructure development during final/intermediate stage sintering–I. Pore/Grain Boundary Separation,” Acta Metall. 30 1269–1279 (1982).CrossRefGoogle Scholar
  48. 48.
    A. D. Rollett, D. J. Srolovitz, and M. P. Anderson, “Simulation and theory of abnormal grain growth–aniostropic grain boundary energies and mobilities,” Acta Metall. 37 [4] 1227–1240 (1989).CrossRefGoogle Scholar
  49. 49.
    W. D. Kingery, B. Francois, “The sintering of crystalline oxides, I. Interactions between grain boundaries and pores,” in: Sintering and Related Phenomena, Ed. G. C. Kuczynski, N. Hooten, and C. Gibbon, Gordon and Breach, NY (1967) 471–499.Google Scholar
  50. 50.
    A. G. Evans, C. H. Hsueh, “Behavior of Large Pores During Sintering and Hot Isostatic Pressing,” J. Amer. Ceram. Soc. 69 [6] 444–48 (1986).CrossRefGoogle Scholar
  51. 51.
    J. E. Blendell, C. A. Handwerker, “Effect of Chemical Composition on Sintering of Ceramics,” J. Crystal Growth 75 138–160 (1986).CrossRefGoogle Scholar
  52. 52.
    C. A. Handwerker, J. M. Dynys, R. M. Cannon, and R. L. Coble, “Dihedral Angles in MgO and Al203: Distributions from Surface Thermal Grooves,” accepted by J. Amer. Ceram. Soc.Google Scholar
  53. 53.
    C. A. Handwerker, J. M. Dynys, R. M. Cannon, and R. L. Coble, “Metal Reference Line Technique for Obtaining Dihedral Angles from Surface Thermal Grooves,” accepted by J. Amer. Ceram. Soc.Google Scholar
  54. 54.
    T. Ikegami, K. Kotani, “Some Roles of MgO and TiO2 in Densification of a Sinterable Alumina,” J. Amer. Ceram. Soc. 70 [12] 885–90 (1987).CrossRefGoogle Scholar
  55. 55.
    Y. Finkelstein, S. M. Wiederhorn, B. J. Hockey, C. A. Handwerker, and J. E. Blendell,“Migration of Sapphire Interfaces into Vitreous Bonded Aluminum Oxide”, in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  56. 56.
    J. Rödel, A. M. Glaeser, “Morphological Evolution of Pore Channels in Alumina”, in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  57. 57.
    J. Rödel, A. M. Glaeser,“Pore Drag in Alumina,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  58. 58.
    J. W. Rödel, Application of Controlled Interfacial Pore Structures to Pore Perturbation and Pore Drag in Alumina, Ph.D thesis, University of California, Berkeley, 1988 (LBL Publication No. LBL-26211).Google Scholar
  59. 59.
    W. A. Kaysser, M. Sprissler, C. A. Handwerker, and J. E. Blendell, “Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina,” J. Amer. Ceram. Soc. 70 [5] 339–343 (1987).CrossRefGoogle Scholar
  60. 60.
    J. E. Burke,“Control of Grain Boundary Mobility,” in: Ceramic Transactions Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  61. 61.
    J. Zhao, M. P. Harmer, “Sintering of Ultra-High-Purity Alumina Doped Simultaneously with MgO and FeO,” J. Amer. Ceram. Soc. 70 [12] 860–66 (1987).CrossRefGoogle Scholar
  62. 62.
    F. F. Lange, T. Yamaguchi, B. I. Davis, P. E. D. Morgan, “Effect of ZrO2 Inclusions on the Sinterability of Al2O3,” J. Amer. Ceram. Soc. 71 [6] 446–48 (1988).CrossRefGoogle Scholar
  63. 63.
    W.H. Rhodes, “Controlled Transient Solid Second-Phase Sintering of Yttria,” J. Amer.Cer. Soc. 64 [1] 13–19 (1981).CrossRefGoogle Scholar
  64. 64.
    D. L. Olgaard, B. Evans, “Effect of Second-Phase Particles on Grain Growth in Calcite, J. Amer. Ceram. Soc. 69 [11] C-272-C-277 (1986).Google Scholar
  65. 65.
    P. K. Gallagher, D. W. Johnson, Jr., and F. Schrey, “Some Effects of the Source and Calcination of Iron Oxide on Its Sintering Behavior,” Bull. Amer. Ceram. Soc. 55 [6] 589–593 (1976).Google Scholar
  66. 66.
    S. J. Bennison, M. P. Harmer, “Effect of MgO Solute on the Kinetics of Grain Growth in Al2O3,” J. Amer. Ceram. Soc. 66 [5] C90 - C92 (1983).CrossRefGoogle Scholar
  67. 67.
    S. J. Bennison, M. P. Harmer, “Grain-Growth Kinetics for Alumina in the Absence of a Liquid Phase,” J. Amer. Ceram. Soc. 68 [1] C22 - C24 (1985).CrossRefGoogle Scholar
  68. 68.
    C. A. Handwerker, P. A. Morris, R. L. Coble, “Effects of Chemical Inhomogeneities on Grain Growth and Microstructure in Al2O3,” J. Amer. Ceram. Soc. 72 [1] 130–36 (1989).CrossRefGoogle Scholar
  69. 69.
    M. H. Drofenik, “Grain Growth During Sintering of Donor-Doped BaTiO3i” J. Amer. Ceram. Soc. Vol. 69, 1986, [1] C-8-C-9.Google Scholar
  70. 70.
    D. F. K. Hennings, R. Janssen, P. J. L. Reynen, “Control of Liquid- Phase-Enhanced Discontinuous Grain Growth in Barium Titanate,” J. Amer. Ceram. Soc. Vol. 70, 1987, [1] 23–27.CrossRefGoogle Scholar
  71. 71.
    D. Kolar,“Discontinuous Grain Growth in Multiphase Ceramics,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, The American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  72. 72.
    C. A. Handwerker, Sintering and Grain Growth of MgO, Sc.D Thesis, M.I.T., Cambridge MA, 1983.Google Scholar
  73. 73.
    P. A. Morris, “Impurities in Ceramics: Processing and Effects on Properties,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  74. 74.
    P. A. Morris, High-Purity Al 2 03: Processing and Grain Boundary Structures, Ph.D Thesis, M.I.T., Cambridge MA, June 1986.Google Scholar
  75. 75.
    P. A. Morris, R. H. French, R. L. Coble, F. N. Tebbe, U. Chowdhry, “Clean-Room and CO2-Laser Processing of Ultra High-Purity Al2O3,” in Defect Properties and Processing of High- Technology Nonmetallic Materials, Ed. Y. Chen, 60, Materials Research Society, Pittsburgh, PA, 1986, p. 79.Google Scholar
  76. 76.
    S. J. Bennison, The Effect of MgO on the Sintering of High Purity Alumina, Ph.D Thesis, Lehigh University, 1987.Google Scholar
  77. 77.
    J. E. Blendell, H. K. Bowen, and R. L. Coble, “High Purity Alumina by Controlled Precipitation from Aluminum Sulfate Solutions,” Bull. Amer. Ceram. Soc. 63 797–804 (1984).Google Scholar
  78. 78.
    J. W. Cahn,“Grain Rotation in Sintering: An Examination of Driving Force Arguments,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  79. 79.
    S. Prochazka,“Surface Area, Average Mean Curvature and Chemical Potential in Porous Bodies,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  80. 80.
    D. J. Green, C. Nader, and R. Brezny, “The Elastic Behavior of Partially-Sintered Alumina,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell. and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  81. 81.
    K. G. Frase, K. Hardman-Rhyne, “Porosity in Spinel Compacts Using Small-Angle Neutron Scattering,” J. Amer. Ceram. Soc. 71 [1] 1–6 (1988).CrossRefGoogle Scholar
  82. 82.
    R. K. Bordia, R. Raj, “Sintering of TiO2-Al2O3 Composites: A Model Experimental Investigation,” J. Amer. Ceram. Soc. 71 302–310 (1988).CrossRefGoogle Scholar
  83. 83.
    J. P. Smith, G. L. Messing, “Sintering of Bi-modally Distributed Alumina Powders,” J. Amer. Ceram. Soc. 67 238–42 (1984).CrossRefGoogle Scholar
  84. 84.
    B. Kellett, F. F. Lange, “Stresses Induced by Differential Sintering in Powder Compacts,” J. Amer. Ceram. Soc. 67 369–71 (1984).CrossRefGoogle Scholar
  85. 85.
    L. C. DeJonghe, M. N. Rahaman, and C. H. Hsueh, “Transient Stresses in Bimodal Compacts During Sintering,” Acta Metall. 34 1467–71 (1986).CrossRefGoogle Scholar
  86. 86.
    M. W. Weiser, L. C. De Jonghe, “Inclusion Size and Sintering of Composite Powders,” J. Amer. Ceram. Soc. 71 C125–127 (1988).CrossRefGoogle Scholar
  87. 87.
    R. K. Bordia, G. W. Scherer,“On Constrained Sintering–Parts I, II, and III, ” Acta Metall. 36 2393–2416 (1988).CrossRefGoogle Scholar
  88. 88.
    L. C. DeJonghe, M. N. Rahaman, “Sintering stress of homogeneous and heterogeneous powder compacts,” Acta Metall. 36 223–229 (1988).CrossRefGoogle Scholar
  89. 89.
    M. N. Rahaman, L. C. De Jonghe, “Effect of Rigid Inclusions on Sintering,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 887–896.Google Scholar
  90. 90.
    C. P. Ostertag,“Reduction in Sintering Damage of Fiber-Reinforced Composites,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  91. 91.
    C. P. Ostertag, “Technique for Measuring Stresses Which Occur During Sintering of a Fiber-Reinforced Ceramic Composite,” J. Amer. Ceram. Soc. 70 C355 - C357 (1987).CrossRefGoogle Scholar
  92. 92.
    C. P. Ostertag, P. G. Charalambides and A. G. Evans,“Observations and Analysis of Sintering Damage,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  93. 93.
    W. H. Tuan, E. Gilbert, and R. J. Brook, “Sintering of heterogeneous ceramic compacts,” J. Mat. Sci. 24 1062–68 (1980).CrossRefGoogle Scholar
  94. 94.
    M. Ciftcioglu, M. Akinc, and L. Burkhart, “ Effect of Agglomerate Strength on Sintered Density for Yttria Powders Containing Agglomerates of Monosize Spheres,” J. Amer. Ceram. Soc. 70 C329 - C334 (1987).CrossRefGoogle Scholar
  95. 95.
    T. N. Tiegs, P. F. Becher, “Sintered Al203-SiC-Whisker Composites,” Bull. Amer. Ceram. Soc. 66 339–42 (1987).Google Scholar
  96. 96.
    S. Kamiya, H. K. Bowen; “Microstructural Control of Al203-TiO2 Composites by Cyclic Annealing,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 978–985.Google Scholar
  97. 97.
    M. P. Borom, M. Lee, “Effect of Heating Rate on Densification of Alumina-Titanium Carbide Composites,” Adv. Ceram. Mat. 1 335–40 (1986).Google Scholar
  98. 98.
    G. Valentine, A. N. Palazotto, R. Ruh, and D. C. Larsen, “Thermal Shock Resistance of SiC-BN Composites,” Adv. Ceram. Mat. 1 81–87 (1986).Google Scholar
  99. 99.
    G. L. Messing, M. Kumagai, “Low Temperature Sintering of Seeded Sol-GelDerived, Zr02-Toughened Al203 Composites,” J. Amer. Ceram. Soc. 72 40–44 (1989).CrossRefGoogle Scholar
  100. 100.
    M. Ishitsuka, T. Sato, T. Endo, M. Shimada, “Sintering and Mechanical Properties of Yttria-Doped Tetragonal Zr02 Polycrystal/Mullite Composites,” J. Amer. Ceram. Soc. 70 [11] C342 - C346 (1987).CrossRefGoogle Scholar
  101. 101.
    M. N. Rahaman, L. C. DeJonghe, S. L. Shinde, P. H. Tewari; “Sintering and Microstructure of Mullite Aerogels,” J. Amer. Ceram. Soc. 71 [7] C338 - C341 (1988).CrossRefGoogle Scholar
  102. 102.
    M. N. Rahaman, D.-Y. Jeng, “Sintering of Mullite and Mullite- Matrix Composites,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker. J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  103. 103.
    Y.L. Tian, D. L. Johnson, and M. E. Brodwin, “Microwave Sintering of Al203Zr02 Composites,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 933–938.Google Scholar
  104. 104.
    D. K. Kim, C. H. Kim, “Pressureless Sintering and Microstructural Development of B4C-TiB3 Composites,” Adv. Ceram. Mat. 3 52–55 (1988).Google Scholar
  105. 105.
    M. N. Rahaman, L. C. De Jonghe, “Effect of Rigid Inclusions on Sintering of Glass Powder Compacts,” J. Amer. Ceram. Soc. 70 C348 - C351 (1987).CrossRefGoogle Scholar
  106. 106.
    C.-H. Hsueh, A. G. Evans, R. M. Cannon, and R. J. Brook, “Viscoelastic Stresses and Sintering Damage in Heterogeneous Powder Compacts,” Acta Metall. 34 927–36 (1986).CrossRefGoogle Scholar
  107. 107.
    R. K. Bordia, G. W. Scherer, “Sintering of Composites: A Critique of Available Analyses,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 872–886.Google Scholar
  108. 108.
    G. W. Scherer, “Viscous Sintering with a Pore-Size Distribution and Rigid Inclusions,” J. Amer. Ceram. Soc. 71 [10] C447 - C448 (1988).CrossRefGoogle Scholar
  109. 109.
    G. W. Scherer, “Sintering of Rigid Inclusions,” J. Amer. Ceram. Soc. 70 719–725 (1987).CrossRefGoogle Scholar
  110. 110.
    C.-H. Hsueh, “Comment on ”Sintering with Rigid Inclusions“,” J. Amer. Ceram. Soc. 71 C314 - C315 (1988).Google Scholar
  111. 111.
    G. W. Scherer, “Reply,” J. Amer. Ceram. Soc. 71 C315–316 (1988).Google Scholar
  112. 112.
    C.-H. Hsueh, “Sintering of Whisker-Reinforced Ceramics and Glasses,” J. Amer. Ceram. Soc. 71 C441 - C444 (1988).Google Scholar
  113. 113.
    Kurt R. Mikeska, George W. Scherer, and Rajendra K. Bordia, “Constitutive Behavior of Sintering Materials,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  114. 114.
    R. K. Bordia, R. Raj, “Hot Isostatic Pressing of Ceramic/Ceramic Composites at Pressures lOMPa,” Adv. Ceram. Mat. 3 122–26 (1988).Google Scholar
  115. 115.
    P. A. Mataga,“Retardation of Sintering in Heterogeneous Powder Compacts,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  116. 116.
    R. M. German, Liquid Phase Sintering, Plenum Press, New York, 1985.Google Scholar
  117. 117.
    R. B. Heady and J. W. Cahn, “An Analysis of Capillary Force in Liquid Phase Sintering,” Met. Trans. 1 185 (1970).Google Scholar
  118. 118.
    J. W. Cahn and R. B. Heady, “Analysis of Capillary Force in Liquid Phase Sintering of Jagged Particles,” J. Amer. Ceram. Soc. 53 [7] 406 (1970).CrossRefGoogle Scholar
  119. 119.
    H. Park, S. Cho, and D. N. Yoon, “Pore Filling During Liquid Phase Sintering,” Met. Trans. A. 15A 1075–80 (1984).CrossRefGoogle Scholar
  120. 120.
    T. M. Shaw, “Liquid Redistribution during Liquid Phase Sintering,” J. Amer. Ceram. Soc. 69 [1] 27–34 (1986).CrossRefGoogle Scholar
  121. 121.
    W. D. Kingery, “Densification during Sintering in the Presence of a Liquid Phase: I. Theory,” J. Appl. Phys. 30 [3] 301–306 (1959).CrossRefGoogle Scholar
  122. 122.
    D. R. Clarke, “On the Equilibruim Thickness of Intergranular Glass Phases,” J. Amer. Ceram. Soc. 70 [1] 15–22 (1987).CrossRefGoogle Scholar
  123. 123.
    P. Greil, J. Weiss, “Evaluation of Microstructure of ß-SiA1ON Solid solution Materials Containing Different Amounts of Amorphous Grain Boundary Phase,” J. Mat. Sci. 17 1571 (1982).CrossRefGoogle Scholar
  124. 124.
    J. E. Marion, C. H. Hsueh, and A. G. Evans, “Liquid Phase Sintering of Ceramics,” J. Amer. Ceram. Soc. 70 [10] 708–13 (1987).CrossRefGoogle Scholar
  125. 125.
    W. A. Kaysser, “Sintering and HIP with a Liquid Phase,”in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, The American Ceramic Society, Westerville, Ohio, 1988, 955–968.Google Scholar
  126. 126.
    L. C. DeJonghe, V. Srikanth, “Liquid-Phase Sintering of MgO-Bi203,” J. Amer. Ceram. Soc. 71 [7] C356 - C358 (1988).Google Scholar
  127. 127.
    D. F. K. Hennings, R. Janssen, P. J. L. Reynen, “Control of Liquid-PhaseEnhanced Discontinuous Grain Growth in Barium Titanate,” J. Amer. Ceram. Soc. 70 [1] 23–27 (1987).CrossRefGoogle Scholar
  128. 128.
    U.-C. Oh, Y.-S. Chung, D.-Y. Kim, and D. N. Yoon, “Effect of Grain Growth on Pore Coalescence During the Liquid-Phase Sintering of MgO-CaMgSiO4 Sys-tems,” J. Amer. Ceram. Soc. 71 110] 854–57 (1988).Google Scholar
  129. 129.
    P.L. Flaitz, J.A. Pask, “Penetration of Polycrystalline Alumina by Glass at High Temperatures,” J. Amer. Ceram. Soc. 70, 449–455 (1987).CrossRefGoogle Scholar
  130. 130.
    H. Song, R. L. Coble, Liquid Phase Sintered Al2O3: I, Origin and growth kinetics of plate-like abnormal grains and II, Morphology of plate-like abnormal grains, submitted to J. Amer. Ceram. Soc.Google Scholar
  131. 131.
    D.-D. Lee, S.-J. L. Kang, and D. N. Yoon, “Mechanism of Grain Growth and a — ß’ Transformation During Liquid-Phase Sintering of ß’-Sialon,” J. Amer. Ceram. Soc. 71 [9] 803–808 (1988).CrossRefGoogle Scholar
  132. 132.
    For example, B. Lewis, “Nucleation and crystal growth,” in: Crystal Growth, Ed. B. Pamplin, Pergamon Press, New York, 1975, pp. 12–39.Google Scholar
  133. 133.
    A. Nohara, T. Nakagawa, T. Soh, T. Shinke, “Numerical Simulation of the Densification Behaviour of Metal Powder During Hot Isostatic Pressing,” Inter. J. Numer. Methods in Engineering 25 213–225 (1988).CrossRefGoogle Scholar
  134. 134.
    M. Oyane, S. Shima, Y. Kono, “Theory of Plasticity for Porous Metals,” Bull. JSME 16 [99] 1254–1262 (1973).CrossRefGoogle Scholar
  135. 135.
    B. Aren, E. Navara, “Modelling Shape Change of Parts Produced by Hot Isostatic Pressing of Powders,” Powder Metallurgy 31 [2] 101–105 (1988).Google Scholar
  136. 136.
    M. Abouaf, J. L. Chenot, G. Raisson, P. Bauduin, “Finite Element Simulation of Hot Isostatic Pressing of Metal Powders,” Inter. J. Numer. Methods in Engineering 25 191–212 (1988).CrossRefGoogle Scholar
  137. 137.
    J. Besson, M. Abouaf, “Numerical Simulation of Hot Isostatic Pressing of Ceramic Powders, International Conference on Hot Isostatic Pressing of Materials, Antwerp 25–27 April, 1988.Google Scholar
  138. 138.
    W-B. Li, M. F. Ashby, K. E. Easterling, “On Densification and Shape Change During Hot Isostatic Pressing,” Acta Metall. 35 [12] 2831–2842 (1987).CrossRefGoogle Scholar
  139. 139.
    W. Li, K. E. Easterling, “Stresses Developed in the Hot Isostatic Pressing of Metals and Ceramics,” Holanilulea Mechanical Report, 1287:48T, 1–21, 1987Google Scholar
  140. 140.
    C. Brodhag, F. Thevenot, “Progress in Hot Pressing: Transitory Phenomena during Temperature Chenges,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 947–954.Google Scholar
  141. 141.
    M. M. Rahaman, L. C. De Jonghe, C. H. Hsueh, “Creep During Sintering of Porous Compacts,” J. Amer. Ceram. Soc. 69 [1] 58–60 (1986).CrossRefGoogle Scholar
  142. 142.
    M. Lin, M. N. Rahaman, L. C. DeJonghe, “Creep-Sintering and Microstructure Development of Heterogeneous MgO Compacts,” J. Amer. Ceram. Soc. 70 [5] 360–366 (1987).CrossRefGoogle Scholar
  143. 143.
    K. R. Venkatachari, R. Raj, “Enhancement of Strength through Sinter Forging” J. Amer. Ceram. Soc. 70 [7] 514–20 (1987).CrossRefGoogle Scholar
  144. 144.
    A. P. Druschitz, “Processing Zirconia by Sintering/Hot Isostatic Pressing,” Advanced Ceramic Materials, 3 [3] 254–56 (1988).Google Scholar
  145. 145.
    S. T. Lin, R. M. German, “Compressive Stress for Large-Pore Removal in Sintering,” J. Amer. Ceram. Soc. 71 [10] C-432-C-433 (1988).Google Scholar
  146. 146.
    B. J. Kellett, F. F. Lange, “Hot Forging Characteristics of Fine Grained ZrO2 and Al2O3/ZrO2 Ceramics,” J. Amer. Ceram. Soc. 69 [8] C-172-C-173 (1986).Google Scholar
  147. 147.
    T. Hattori, M. Yoshimura, S. Somiya, “High-Pressure Hot Isostatic Pressing of Synthetic Mica,” J. Amer. Ceram. Soc. 69 [8] C-182-C-183 (1986).Google Scholar
  148. 148.
    B. K. Lograsso, D. A. Koss, “Densification of Titanium Powder During Hot Isostatic Pressing,” Met. Trans. 19A 1767–1773 (1988).CrossRefGoogle Scholar
  149. 149.
    James G. Schroth, Alan P. Druschitz,“ Optimizing Unencapsulated Hot Isostatic Pressing of Al2O3,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  150. 150.
    H. Schubert, W. A. Kaysser,“HIPing of Alumina,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  151. 151.
    B. J. Kellett, F. F. Lange, “Experiments on Pore Closure During Hot Isostatic Pressing and Forging,” J. Amer. Ceram. Soc. 71 [1] 7–12 (1988).CrossRefGoogle Scholar
  152. 152.
    A. S. Helle, K. E. Easterling, M. F. Ashby, “Hot-Isostatic Pressing Diagrams: New Developments,” Acta Metall. 33 [12] 2163–2174 (1985).CrossRefGoogle Scholar
  153. 153.
    S. Nair, J. K. Tien, “Densification Mechanism Maps for Hot Isostatic Pressing (HIP) of Unequal Sized Particles,” Met. Trans. A, 18A (1987) 97–107.CrossRefGoogle Scholar
  154. 154.
    Science and Technology of Zirconia III, Ed. S. Somiya, N. Yamamoto, H. Yanagida, (Advances in Ceramics, Vol 24 ), American Ceramic Society, Westerville, OH, 1988.Google Scholar
  155. 155.
    S. Somiya, M. Yoshimura, “Microstructure Development of Hydrothermal Powders and Ceramics,” in: Ceramic Microstructures ‘86 Role of Interfaces (Materials Science Research), 21 464–475.Google Scholar
  156. 156.
    J.-M. Wu, C.-H. Wu, “Sintering Behavior of Highly Agglomerated Ultrafine Zirconia Powders,” J. Mat. Sci. 23 3290–3299 (1988).CrossRefGoogle Scholar
  157. 157.
    S. Blackburn, M. P. Hitchiner, C. R. Kerridge, “Green Density Characteristics and Densification Kinetics of PSZ Powders Produced by Electro-Refinning,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 864–865.Google Scholar
  158. 158.
    J.-G. Duh, H.-T. Dai, “Sintering, Microstructure, Hardness and Fracture Toughness Behavior of Y203-CeO2-ZrO2i” J. Amer. Ceram. Soc. 71 [10] 813–19 (1988).CrossRefGoogle Scholar
  159. 159.
    J.-G. Duh, 11.-T. Dai, W.-Y. Hsu, “Synthesis and Sintering Behavior in CeO2ZrO2 Ceramics,” J. Mat. Sci. 23 2786–2791 (1988).CrossRefGoogle Scholar
  160. 160.
    R. M. Dickerson, M. V. Swain, A. H. Heuer, “Microstructural Evolution in Ca-PSZ and the Room-Temperature Instability of Tetragonal ZrO2,” J. Amer. Ceram. Soc. 70 [4] 214–20 (1987).CrossRefGoogle Scholar
  161. 161.
    C. L. Lin, D. Gan, P. Shen, “Stabilization of Zirconia Sintered with Titanium,” J. Amer. Ceram. Soc. 71 [8] 624–29 (1988).CrossRefGoogle Scholar
  162. 162.
    M. Ishitsuka, T. Sato, T. Endo, M. Shimada, “Sintering and Mechanical Properties of Yttria-Doped Tetragonal ZrO2 Polycrystal/Mullite Composites,” J. Amer. Ceram. Soc. 70 [11] C342 - C346 (1987).CrossRefGoogle Scholar
  163. 163.
    -Y. Lu, J.-S. Bow, “Effect of MgO Addition on the Microstructure Development of 3 mol% Y203-ZrO2i” J. Amer. Ceram. Soc. 72 [2] 228–31 (1989).CrossRefGoogle Scholar
  164. 164.
    E. Min-Hags, W. D. Scott, “Sintering and Mechanical Properties of ZrC-ZrO2 Composites,” J. Mat. Sci. 23 2865–2870 (1988).CrossRefGoogle Scholar
  165. 165.
    P. C. Panda, J. Wang, R. Raj, “Sinter-Forging Characteristics of Fine-Grained Zirconia,” J. Amer. Ceram. Soc. 72 [12] C-507-C-509 (1988).Google Scholar
  166. 166.
    G. Zhilun, L. Longtu, G. Suhua, Z. Ziaowen, “Low Temperature Sintering of Lead-Based Piezoelectric Ceramics,” J. Amer. Ceram. Soc. 72 [3] 486–91 (1989).CrossRefGoogle Scholar
  167. 167.
    J. P. Guha, H. U. Anderson, “Reaction During Sintering of Barium Titanate with Lithium Fluoride,” J. Amer. Ceram. Soc. 69 [8] C193 - C194 (1986).CrossRefGoogle Scholar
  168. 168.
    G. M. Dynna, Y.-M. Chiang, “Mechanisms of Grain Growth Enhancement and Inhibition in Donor-Doped Barium Titanate,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  169. 169.
    J.-S. Chen, R.-J. Young, T.-B. Wu, “Densification and Microstructural Development of SrTiO3 sintered with V2O5,” J. Amer. Ceram. Soc. 70 [10] C260–264 (1987).CrossRefGoogle Scholar
  170. 170.
    V. L. Richards, “Agglomerate Size Effect on Sintering of Doped Lanthanum Chromite,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 897–898.Google Scholar
  171. 171.
    J. P. Guha, D’. J. Hong, H. U. Anderson, “Effect of Excess PbO on the Sintering Characteristics and Dielectric Properties of Pb(Mg113Nb2/3)03-Based Ceramics,” J. Amer. Ceram. Soc. 71 [3] C152 - C154 (1988).CrossRefGoogle Scholar
  172. 172.
    J. P. Guha, H. U. Anderson, “Microstructural Inhomogeneity in Sintered Pb(Mg1,3Nb2/3)03-PbTiO3 Based Dielectrics,” J. Amer. Ceram. Soc. 70 [3] C39 - C40 (1987).CrossRefGoogle Scholar
  173. 173.
    M. F. Yan, W. W. Rhodes, “Sintering, Microstructures and Dielectric Properties of Pb(Mg1/3Nb2/3)03 Composition,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  174. 174.
    Y.-S. Yoo, J.-J. Kim and D.-Yeon Kim, “Effect of Heating Rate on the Microstructural Evolution During Sintering of BaTiO3 Ceramics,” J. Amer. Ceram. Soc. 70 [11] C322 - C324 (1987).CrossRefGoogle Scholar
  175. 175.
    Z. S. Ahn, W. A. Schulze, “Conventionally Sintered (Nao.s, Ko.5)NbO3 with Barium Additions,” J. Amer. Ceram. Soc. 70 [1] C18 - C21 (1987).CrossRefGoogle Scholar
  176. 176.
    C. E. Baumgartner, “Fast Firing and Conventional Sintering of Lead Zirconate Titanate Ceramic,” J. Amer. Ceram. Soc. 71 [7] C350–353 (1988).CrossRefGoogle Scholar
  177. 177.
    B.-S. Chiou, S.-T. Lin, J.-G. Duh, “The Effect of Sintering Conditions on the Grain Growth of the BaTiO3-Based GBBL Capacitors,” J. Mat. Sci. 23 38893893 (1988).Google Scholar
  178. 178.
    P. Duran, J. F. F. Lozano, F. Capel, C. Moure, “Large Electromechanical Anisotropic Modified Lead Titanate Ceramics,” Journal of Materials Science 23 4463–4469. (1988).CrossRefGoogle Scholar
  179. 179.
    T. Kimura, T. Yoshimoto, FN. Lida, Y. Fujita, T. Yamaguchi, “Mechanism of Grain Orientation During Hot-Pressing of Bismuth Titanate,” J. Amer. Ceram. Sco. 72 [1] 85–89 (1989).CrossRefGoogle Scholar
  180. 180.
    J. P. Gambino, W. D. Kingery, G. E. Pike, L. M. Levinson, H. R. Phillipp, “Effect of Heat Treatments on the Wetting Behavior of Bismuth- Rich Intergranular Phases in ZnO:Bi:Co Varistors,” J. Amer. Ceram. Soc. 72 [4] 642–45 (1989).CrossRefGoogle Scholar
  181. 181.
    J. Kim, T. Kimura, T. Yamaguchi, “Sintering of Sb2O3-doped ZnO,” J. Mat. Sci. 24 (1989) 213–219 (1989).CrossRefGoogle Scholar
  182. 182.
    J.E. Blendell, J.S. Wallace, M.J. Hill, “Effect of Poe on Microstructure of Ba2YCu3Os+z,” submitted to J. Am Ceram. Soc. 1989.Google Scholar
  183. 183.
    R.S. Roth, C.J. Rawn, F. Beech, J.D. Whitler, J.O. Anderson, “Phase Equilibria in the System Ba-Y-Cu-O-CO2 in Air,” Ceramics Superconductors II–Research Update, 243–251 (1988).Google Scholar
  184. 184.
    T. Aselage, K. Keefer, “Liquidus Relations in Y-Ba-Cu Oxides,” J. Mat. Res. 3 [6] 1279–1291 (1988).CrossRefGoogle Scholar
  185. 185.
    J.E. Ullman, R.W. McCallum, J.D. Verhoeven, “Effect of Atmosphere and Rare Earth on Liquidus Relations in RE-Ba-Cu Oxides,” J. Mat. Res., 4 [4] 752–755 (1989).CrossRefGoogle Scholar
  186. 186.
    K. Sadananda, A. K. Singh, M. A. Iman, M. Osofsky, V. Le Tourneau, L. E. Richards, “Effect of Hot Isostatic Pressing on RBa2Cu3O7 Superconductors,” Adv. Ceram. Mat. 3 [5] 524–26 (1988).Google Scholar
  187. 187.
    J. J. Rha, K. J. Yoon, S.-J. L. Kang, D. N. Yoon, “Rapid Calcination and Sintering of YBa2Cu3Oz Superconductor Powder Mixture in Inert Atmosphere,” J. Amer. Ceram. Soc. 71 [7] C328 - C329 (1988).CrossRefGoogle Scholar
  188. 188.
    P. Sarkar, T. B. Troczynski, K. J. Vaidya, P. S. Nicholson, “Reaction Sintering of YBa2Cu3Oz in Different Oxygen partial Pressures,” Ceramics Superconductors II–Research Update, 204–215 (1988).Google Scholar
  189. 189.
    J. S. Wallace, B. A. Bender, S. H. Lawrence, and D. J. Schrodt, “Reaction Sintering High-Density, Fine-Grained Ba2YCu3Os.5+= Superconductors Using Ba(OH)2H2O,” Ceramics Superconductors II–Research Update, 243–251 (1988).Google Scholar
  190. 190.
    K. Sawano, A. Hayashi, T. Ando, T. Inuzuka, H. Kubo, “Processing of Superconducting Ceramics for High Critical Current Density,” Ceramics Superconductors II–Research Update, 282–293 (1988).Google Scholar
  191. 191.
    P. Sainamthip, V. R. W. Amarakoon, “Role of Zinc Volatilization on the Microstructure Development of Manganese Zinc Ferrites,” J. Amer. Ceram. Soc. 71 [8] 644–48 (1988).CrossRefGoogle Scholar
  192. 192.
    J. T. Mullin, R. J. Willey, “Grain Growth of Ti-Substituted Mn-Zn Ferrites,” Fourth International Conference on Ferrites Part 1 (Advances in Ceramics, Vol. 15), American Ceramic Society, Westerville, OH, 1985, 187–191.Google Scholar
  193. 193.
    H. Rikukawa, I. Sasaki, “On the Sintering Atmosphere of Mn-Zn Ferrites,” Fourth International Conference on Ferrites Part 1 (Advances in Ceramics, Vol. 15), American Ceramic Society, Westerville, OH, 1985, 215–219.Google Scholar
  194. 194.
    C. M. Srivastava, N. Venkataramani, R. Aiyar, “Studies on the Sintering Mechanism and on Texturization in the Hot-Pressed System (Mn, Zn, Fe)Fe2O4i” Fourth International Conference on Ferrites Part 1 (Advances in Ceramics, Vol. 15), American Ceramic Society, Westerville, OH, 1985, 193–200.Google Scholar
  195. 195.
    Fourth International Conference on Ferrites, Ed. F.F.Y. Wang, Advances in Ceramics, Vol. 15, Amer. Ceramic Society, Westerville, OH, 1985.Google Scholar
  196. 196.
    K. Omatsu, T. Kumura, T. Yamaguchi, “Sintering of Acicular NiZn- Ferrite Powder,” Ceramic Microstructures ‘86–Role of Interfaces (Materials Science Research), 21 623–631 (1986).Google Scholar
  197. 197.
    S. Komarneni, E. Fregeau, E. Breval, R. Roy, “Hydrothermal Preparation of Ultrafine Ferrites and Their Sintering,” J. Amer. Ceram. Soc. 71 [1] C26 - C28 (1988).CrossRefGoogle Scholar
  198. 198.
    F. J. C. M. Toolenaar, M. T. J. Verhees, “Reactive Sintering of Zinc Ferrite,” J. Mat. Sci. 23 856–861 (1988).CrossRefGoogle Scholar
  199. 199.
    P. Kishan, D. R. Sagar, S. N. Chatterjee, J. K. Nagpaul, N. Kumar, K. K. Laroia, “Optimization of Bi2O3 Content and Its Role in Sintering of Lithium Ferrites,” Fourth International Conference on Ferrites Part 1 (Advances in Ceramics Vol 15), Amer. Ceramic Society, Westerville, OH, 1985, 207–213.Google Scholar
  200. 200.
    C. Greskovich, S. Prochazka, “Selected Sintering Conditions for SiC and Si3N4 Ceramics,” Ceramic Microstructures ‘86–Role of Interfaces, Materials Science Research, 21 601–610 (1986).Google Scholar
  201. 201.
    T. M. Shaw, B. A. Pethica, “Preparation and Sintering of Homogeneous Silicon Nitride Green Compacts,” J. Am Ceram. Soc. 69 [1] 88–93 (1986).CrossRefGoogle Scholar
  202. 202.
    B. A. Bishop, M. S. Spotz, W. E. Rhine, H. K. Bowen, J. R. Fox, “Sintering of Silicon Carbide Prepared From a Polymeric Precursor,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 856–857.Google Scholar
  203. 203.
    William J. Hurley, Jr., Leonard V. Interrante, Roberto Garcia, and Robert H. Doremus,“ Sintering and Microstructural Studies of Nanosized Crystalline Si3N4 and Si3N4/A1N Powders Derived from Organometallic Precursors,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  204. 204.
    O. J. Gregory, S.-B. Lee, R. C. Flagan, “Reaction Sintering of Submicrometer Silicon Powder,” J. Amer. Ceram. Soc. 70 [3] C-52-C-55 (1987).Google Scholar
  205. 205.
    J. A. Palm, C. D. Greskovich, “Thermomechanical Properties of Hot- Pressed Si2.9Be0.1N3.8O0.2 Ceramic,” Bull. Amer. Ceram. Soc. 59 [4] 447–452 (1980).Google Scholar
  206. 206.
    S. Bandyopadhyay, J. Mukerji, “Sintering and Properties of Sialons without Externally Added Liquid Phase,” J. Amer. Ceram. Soc. 70 [10] C273–277 (1987).CrossRefGoogle Scholar
  207. 207.
    C. Greskovich, W. D. Pasco, G. D. Quinn, “Thermomechanical Properties of a New Composition of Sintered Si3N4,” Bull. Amer. Ceram. Soc. 60 [9] 1165–1170 (1984).Google Scholar
  208. 208.
    W. A. Sanders, D. M. Mieskowski, “Strength and Microstructure of Si3N4 with Zr02 Additions,” Adv. Ceram. Mat. 1 166–73 (1986).Google Scholar
  209. 209.
    M. H. Lewis, G. Leng-Ward, and C. Jasper, “Sintering Additive Chemistry in Controlling Microstructure and Properties of Nitride Ceramics,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, The American Ceramic Society, Westerville, Ohio, 1988, 1019–1033.Google Scholar
  210. 210.
    P. K. Das, J. Mukerji, “Sintering Behavoir and Properties of Si3N4 Sintered with Nitrogen-Rich Liquid in the System Y203-AIN-Si02,” Adv. Ceram. Mat. 3 [3] 238–43 (1988).Google Scholar
  211. 211.
    M. Omori, H. Takei, “Preparation of Pressureless-Sintered SiC- Y203-Al203i” J. Mat. Sci. 23 3744–3749 (1988).CrossRefGoogle Scholar
  212. 212.
    N. Hirosaki, A. Okada, K. Matoba, “Sintering of Si3N4 with the Addition of Rare-Earth Oxides,” J. Amer. Ceram. Soc. 71 [3] C-144-C-147 (1988).Google Scholar
  213. 213.
    L. Cordrey, D. E. Niesz, and D. J. Shanefield,“Sintering of Silicon Carbide with Rare-Earth Additions,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, The American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  214. 214.
    T Takahashi,“The Sintering Behavior of Y203-MgO-Zr02 Doped and Y203Yb2O3 Doped Silicon Nitride,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  215. 215.
    C. O’Meara, J. Sjoberg,“The Development of Microstructure in Pressureless Sintered Si2N2O Bodies,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, The American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  216. 216.
    R. Jimbou, Y. Suzuki, R. Sugita, “Sintering of SiC-ZrB2/A1N Heating Element by Hot-Pressing,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  217. 217.
    W.A. Sanders, G. Baaklin, “Correlation of Processing and Sintering Variables with the Strength and Radiography of Silicon Nitride,” Adv. Ceram. Mat. 3 [1] 88–94 (1988).Google Scholar
  218. 218.
    W.D. Carter, P.H. Holloway, C. White, R Clausing, “Boron Distribution in Sintered Silicon Carbide,” Adv. Ceram. Mat. 3 [1] 62–65 (1988).Google Scholar
  219. 219.
    O. Yamada, Y. Miyamoto, M. Koizumi, “High-Pressure Self-Combustion Sintering of Titanium Carbide,” J. Amer. Ceram. Soc. 70 [9] C-206-C-208 (1987).Google Scholar
  220. 220.
    M. Akaishi, S. Yamaoka, J. Tanaka, T. Ohsawa, O. Fukunaga, “Synthesis of Sintered Diamond with High Electrical Resistivity and Hardness,” J. Amer. Ceram. Soc. 70 [10] C237 - C239 (1987).CrossRefGoogle Scholar
  221. 221.
    T. Akaishi, A. B. Sawaoka, “Dynamic Compaction of Cubic Boron Nitride Powders,” J. Amer. Ceram. Soc. 69 [4] C-78-C-80 (1986).Google Scholar
  222. 222.
    M. A. Janney, H. D. Kimrey, “Microstructure Evolution in Microwave Sintered Alumina,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker. J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  223. 223.
    M. A. Janney, H. D. Kimrey, “Microwave Sintering of Alumina at 28 GHz,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 919–924.Google Scholar
  224. 224.
    Y. L. Tian, H. S. Dewan, M. E. Brodwin, and D. Lynn Johnson, “Microwave Sintering Behavior of Alumina Ceramics,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  225. 225.
    Y.L. Tian, D. L. Johnson, and M. E. Brodwin, “Microwave Sinteirng of Al203ZrO2 Composites,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 933–938.Google Scholar
  226. 226.
    J. Wilson, S. M. Kunz, “Microwave Sintering of Partially Stabilized Zirconia,” J. Amer. Ceram. Soc. 71 [1] C40 - C41 (1988).CrossRefGoogle Scholar
  227. 227.
    F. Okada, S. Tashiro, M. Suzuki, “Microwave Sintering of Ferrites,” Fourth International Conference on Ferrites Part 1, (Advances in Ceramics Vol 15), Amer. Ceramic Society, Westerville, OH, 1985, 201–205.Google Scholar
  228. 228.
    E. K. Beauchamp, M. J. Carr, R. A. Graham, “Hot-Pressing of Shock-Activated Aluminum Nitride,” Advanced Ceramic Materials, 2 [1] 79–84 (1987).Google Scholar
  229. 229.
    R.F. Davis, Y. Horie, R.O. Scattergood, H. Palmore, III, “Defects Produced by Shock Conditioning: An Overview,” Advances in Ceramics Vol 10, Structure and Properties of MgO and Al2O3 Ceramics, Ed. W.D. Kingery, American Ceramic Society, Westerville, OH, 1984.Google Scholar
  230. 230.
    D. Beruto, R. Botter, and A. W. Searcy, “The Influence of Thermal Cycling on Densification: Further Tests of a Theory,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 911–918.Google Scholar
  231. 231.
    D. Beruto, R. Botter, A. W. Searcy, “Influence of Temperature Gradients on Sintering: Experimental Tests of a Theory,” J. Amer. Ceram. Soc. 72 [2] 232–35 (1989).CrossRefGoogle Scholar
  232. 232.
    A. W. Searcy, “Theory for Sintering in Temperature Gradients: Role of Long-Range Mass Transport,” J. Amer. Ceram. Soc. 70 [3] C61 - C62 (1987).CrossRefGoogle Scholar
  233. 233.
    D. Beruto, R. Botter, A. W. Searcy, “The Influence of Thermal Cycling on Densification: Further Tests of a Theory,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 911–912.Google Scholar
  234. 234.
    W. B. Johnson, T. D. Claar, G. H. Schiroky, “Preparation and Processing of Platelet Reinforced Ceramics by the Directed Reaction of Zirconium with Boron Carbide,” to be published in in Ceramic Engineering and Science Proceedings; 9 [7–8] (1989).Google Scholar
  235. 235.
    T. D. Claar, W. B. Johnson, C. A. Andersson, G. H. Schiroky, “Microstructure and Properties of Platelet Reinforced Ceramics Formed by the Directed Reaction of Zirconium with Boron Carbide,” to be published in: Ceramic Engineering and Science Proceedings, 9 [7–8] (1989).Google Scholar
  236. 236.
    D.K. Kim, C.H. Kim, “Pressureless Sintering and Microstructural Development of B4C-TiB2 Composites,” Advanced Ceramic Materials, 3 [1] 52–55 (1988).Google Scholar
  237. 237.
    D. Barnier, F. Thevenot, “Fabrication of ZrCzOy and ZrC.0y-ZrO2 Composite Ceramics,” In: Ceramic Transactions: Ceramic Powder Science II, Vol. 1, Edited by Gary L. Messing and Edwin R. Fuller, American Ceramic Society, Westerville, OH, 1988.Google Scholar
  238. 238.
    H. Nagai, K. Ohbayashi, “Effect of TiO2 on the Sintering and the Electrical Conductivity of Cr2O3,” J. Amer. Soc. 72 [3] 400–03 (1989).Google Scholar
  239. 239.
    D. Beruto, R. Botter, “H2O-Catalyzed Sintering of ~2 nm-Cross-Section Particles of MgO,” J. Amer. Ceram. Soc. 70 [3] 155–59 (1987).CrossRefGoogle Scholar
  240. 240.
    R.J. Higgins, H.K. Bowen, “Preparation and Sintering Behavior of Fine-Grained MgAl2O4-Si02 Composites,” Adv. in Ceram., Vol. 21, 691–98, 1987.Google Scholar
  241. 241.
    H. Okamura, E. A. Barringer, and H. K. Bowen, “Preparation and Sintering of Monosized Al2O3-TiO2 Composite Powder,” J. Amer. Ceram. Soc. 69 [2] (1986) C-22-C-24.Google Scholar
  242. 242.
    Y. Hirata, I.A. Aksay, “Colloidal Consolidation and Sintering Behavior of CVDProcessed Mullite Powders,” In: Ceramic Microstructures ‘86: Role of Interfaces, Mat. Sci. Res. Vol. 21. Edited by J.A. Pask and A.G. Evans.Google Scholar
  243. 243.
    T.J. Mroz, Jr., J. W. Laughner, “Sintered Microstructures of Seeded Mullite Gels,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.Google Scholar
  244. 244.
    T. J. Mroz, Jr.,, J. W. Laughner, “Microstructures of Mullite Sintered from Seeded Sol-Gels,” J. Amer. Ceram. Soc. 72 [3] 508–509 (1989).CrossRefGoogle Scholar
  245. 245.
    J. L. McArdle, G. L. Messing, “Seeding with ry-Alumina for Transformation and Microstructure Control in Boehmite-Derived a-Alumina, ” J. Amer. Ceram. Soc. 69 [5] C-98-C-101 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Carol A. Handwerker
    • 1
  • John E. Blendell
    • 1
  • Robert L. Coble
    • 2
  1. 1.Materials Science and Engineering LaboratoryNational Institute of Standards and TechnologyGaithersburgUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations