Skip to main content

Sintering of Ceramics

  • Chapter
Science of Sintering

Abstract

The primary goal of sintering research is the controlled manipulation of microstructure. Out of the entire range of microstructures which are theoretically possible, each material system will be able to achieve only a subset of them, depending on the intrinsic material properties. Within these material constraints, the aim is to produce microstructures which enhance specific properties. Our understanding of the relationships among materials processing, microstructure, and properties is just beginning to emerge, and is producing unexpected results. For example, in a recent study of toughness in Al2O3 by Bennison and Lawn, microstructures with platy grains and a bimodal grain size distribution in undoped Al2O3 exhibited a greater resistance to crack propagation than did the more uniform microstructures in MgO-doped Al2O3 [1]. As a result of this emerging understanding, the focus of sintering science is changing from the modification of microstructures in incremental ways for correspondingly incremental improvement in properties to more effectual manipulation of microstructures to optimize properties. However, the production of the optimum microstructure will be dependent on both the material and the application and may require radically different processing routes for different materials. In this review paper, we have examined the research in sintering science over the past five years which has advanced the goal of microstructure manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. J. Bennison and B. R. Lawn, “Role of interfacial grain-bridging sliding friction in the crack-resistance and strength properties of non-transforming ceramics,” submitted to Acta Metall.

    Google Scholar 

  2. H. K. Bowen, “Basic Research Needs on High-Temperature Ceramics for Energy Applications,” Mat. Sci. Eng. 44 1–56 (1980).

    Article  CAS  Google Scholar 

  3. H. E. Exner, “Neck Shape and Limiting GBD/SD Ratios in Solid State Sintering,” Acta Metall. 35, 587–591 (1987).

    Article  Google Scholar 

  4. W. S. Coblenz, J. M. Dynys, R. M. Cannon, and R. L. Coble, “Initial Stage Sintering Models: A Critical Assessment,” in: Sintering Processes, ed. G. C. Kuczynski, Plenum Press, 1980.

    Google Scholar 

  5. W. C. Carter, R. M. Cannon,“Sintering Microstructures: Instabilities and the Interdependence of Mass Transport Mechanisms,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  6. R. M. Cannon, W. C. Carter, “Interplay of Sintering Microstructures, Driving Forces, and Mass Transport Mechanisms,” J. Amer. Ceram. Soc. 72 [8] 1550–1555 (1989).

    Article  CAS  Google Scholar 

  7. K. R. Venkatachari, R. Raj, “Shear Deformation and Densification of Powder Compacts, ” 69 [6] 499–506 (1986).

    Google Scholar 

  8. M. N. Rahaman, L. C. De Jonghe, “Effect of Shear Stress on Sintering,” J. Amer. Ceram. Soc. 69 [1] 53–58 (1986).

    Article  CAS  Google Scholar 

  9. R. K. Bordia, Sintering of Inhomogeneous or Constrained Powder Compacts: Modelling and Experiments, Ph.D Thesis, Cornell University, Ithaca, NY, 1986.

    Google Scholar 

  10. T. Cheng, R. Raj, “Measurement of the Sintering Pressure in Ceramic Films,” J. Amer. Ceram. Soc. 71, [4] 276–80 (1988).

    Article  CAS  Google Scholar 

  11. L. C. DeJonghe, M. N. Rahaman, “Sintering stress of homogeneous and heterogeneous powder compacts,” Acta Metall. 36 223–229 (1988).

    Article  CAS  Google Scholar 

  12. E. G. Liniger, R. Raj, “Packing and Sintering of Two-Dimensional Structures Made from Bimodal Particle Size Distributions,” J. Amer. Ceram. Soc. 70 [11] 843–849 (1987).

    Article  CAS  Google Scholar 

  13. E. G. Liniger, “Spatial Variations in the Sintering Rate of Ordered and Disordered Particle Structures,” J. Amer. Ceram. Soc. 71 [9] C-408- C-410 (1988).

    Google Scholar 

  14. M. W. Weiser, L. C. De Jonghe, “ Rearrangement During Sintering in Two-Dimensional Arrays,” J. Amer. Ceram. Soc. 69 [11] 822–26 (1986).

    Article  CAS  Google Scholar 

  15. R. Raj, R. K. Bordia, “Sintering behavor of bi-modal powder compacts,” Acta Metall. 32 1003–1020 (1984).

    Article  Google Scholar 

  16. T.-S. Yeh, M. D. Sacks, “Effect of Particle Size Distribution on the Sintering of Alumina,” J. Amer. Ceram. Soc. 71 [12] C-484-C-487 (1988).

    Google Scholar 

  17. T.-S. Yeh, M. D. Sacks, “Effect of Green Microstructure on Sintering of Alumina,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  18. M.A. Occhionero, J.W. Halloran, “The Influence of Green Density Upon Sintering,” in: Sintering and Heterogeneous Catalysis, edited by G.C. Kuczynski, Albert E. Miller„ Gordon A. Sargent, Plenum Press (New York), Materials Science Research, Vol. 16.

    Google Scholar 

  19. C. P. Cameron, R. Raj, “Grain-Growth Transition During Sintering of Colloidally Prepared Alumina Powder Compacts,” J. Amer. Ceram. Soc. 71 [12] 1031–35 (1988).

    Article  CAS  Google Scholar 

  20. W.H. Rhodes, “Agglomerate and Particle Size Effects on Sintering Yttria-Stabilized Zirconia,” J. Amer. Ceram. Soc. 64 [1] 19–22 (1981).

    Article  CAS  Google Scholar 

  21. D. J. Sordelet, M. Akinc, “Sintering of Monosized, Spherical Yttria Powders,” J. Amer. Ceram. Soc. 71 [12] 1148–53 (1988).

    Article  CAS  Google Scholar 

  22. D. J. Sordelet, M. Akinc,“Sintering of Monosized, Spherical Y203 Powders,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  23. E. A. Barringer, H. K. Bowen, “Formation, Packing, and Sintering of Monodis-perse TiO2 Powders,” J. Amer. Ceram. Soc. 65 [12] C-199-C-201 (1982).

    Google Scholar 

  24. L. H. Edelson, A. M. Glaeser, “Role of Particle Substructure in the Sintering of Monosized Titania,” J. Amer. Ceram. Soc. 71 [4] 225–35 (1988).

    Article  CAS  Google Scholar 

  25. T. M. Shaw, B. A. Pethica, “Preparation and Sintering of Homogeneous Silicon Nitride Green Compacts,” J. Amer. Ceram. Soc. 69 [2] 88–93 (1986).

    Article  CAS  Google Scholar 

  26. Y. Hirato, I. A. Aksay; “Colloidal Consolidation and Sintering Behavior of CVDProcessed Mullite Powders,” Mat. Sci. Res. Vol. 21 Ceramic Microstructures ‘86: Role of Interfaces 611–621 (1988).

    Google Scholar 

  27. N. Otsuka,“Sintering of Monodisperse Particles, Seramikkusu, 22 473–8 (1987).

    Google Scholar 

  28. J. Zhao, M. P. Harmer, “Effect of Pore Distribution on Microstructure Development: II, Matrix Pores,” J. Amer. Ceram. Soc. 71 [2] 113–20 (1988).

    Article  CAS  Google Scholar 

  29. J. Zhao, M. P. Harmer, “Effect of Pore Distribution on Microstructure Development: II, First-and Second-Generation Pores,” J. Amer. Ceram. Soc. 71 [7] 530–39 (1988).

    Article  CAS  Google Scholar 

  30. T. Ikegami, “Microstructural Development during Intermediate-and Final-Stage Sintering,” Acta Meta.. 35 667–675 (1987).

    Article  CAS  Google Scholar 

  31. A. D. Rollett, D. J. Srolovitz, and M. P. Anderson,“Simulation and Theory of Abnormal Grain Growth-Anisotropic Grain Boundary Mobilities,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  32. N. J. Shaw, R. J. Brook, “Structure and Grain Coarseing During the Sintering of Alumina,” J. Amer. Ceram. Soc. 69 107–110 (1986).

    Article  CAS  Google Scholar 

  33. T. Yamaguchi, H. Kosha, “Sintering of Acicular Fe2O3 Powder,” J. Amer. Ceram. Soc. 64 C-84 - C-85 (1981).

    Google Scholar 

  34. H. Kuno, M. Tsuchiya, Cumulative pore volume difference (CPVD) in the study of pore changes during compaction or sintering, Powder Technology, 52 187–92 (1987).

    Article  CAS  Google Scholar 

  35. K. A. Berry, M. P. Harmer, “Effect of MgO Solute on Microstructure Development in Al2O3,” J. Amer. Ceram. Soc. 69 [2] 143–49 (1986).

    Article  CAS  Google Scholar 

  36. M. J. Readey, D. W. Readey, “Sintering TiO2 in HCl Atmospheres,” J. Amer. Ceram. Soc. 70, [12] C-358-C-361 (1987).

    Google Scholar 

  37. M. J. Readey, D. W. Readey, “Sintering of ZrO2 in HCl Atmospheres,” J. Amer. Ceram. Soc. 69 [7] 580–82 (1986).

    Article  CAS  Google Scholar 

  38. T. Quadir, D. W. Readey, “Microstructure Development of Zinc Oxide in Hydrogen,” J. Amer. Ceram. Soc. 72 [2] 297–302 (1989).

    Article  CAS  Google Scholar 

  39. J. Lee, D.W. Readey, “Microstructure Development of Fe2O3 in HCl Vapor,” in:Sintering and Heterogeneous Catalysis,edited by G.C. Kuczynski, Albert E. Miller, and Gordon A. Sargent, Plenum Press (New York), Materials Science Research, Vol. 16.

    Google Scholar 

  40. D.W. Readey, J. Lee and T. Quadir, “Vapor Transport and Sintering of Ceramics,” in: Sintering and Heterogeneous Catalysis, edited by G.C. Kuczynski, Albert E. Miller, and Gordon A. Sargent, Plenum Press (New York), Materials Science Research, Vol. 16.

    Google Scholar 

  41. D. W. Readey,“Vapor Transport and Sintering,” in: Ceramic Transactions Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  42. L. C. DeJonghe, M. N. Rahaman, M.-Y. Chu, and R. J. Brook, “Effect of Heating Rate on Sintering and Coarsening,” submitted to J. Amer. Ceram. Soc.

    Google Scholar 

  43. T. J. Garin, H. K. Bowen, “Deposition and Sintering of Particle Films on a Rigid Substrate,” J. Amer. Ceram. Soc. 70 C315 - C317 (1987).

    Article  Google Scholar 

  44. L. C. De Jonghe, M. N. Rahaman, and M. Lin, “The Role of Powder Packing in Sintering,” in: Ceramic Microstructures ‘86, Role of Interfaces, Ed. J. A. Pask and A. G. Evans, Plenum Press, New York, 1987, 447–454.

    Chapter  Google Scholar 

  45. W. C. Carter, A. M. Glaeser, “The Morphological Stability of Continuous Intergranular Phases: Thermodynamic Considerations,” Acta Metall. 35 237–45 (1987).

    Article  Google Scholar 

  46. F.F. Lange, “Sinterability of Agglomerated Powders,” J.Amer.Ceram.Soc. 67 83–89 (1984).

    Article  CAS  Google Scholar 

  47. C. H. Hsueh, A. G. Evans, and R. L. Coble, “Microstructure development during final/intermediate stage sintering–I. Pore/Grain Boundary Separation,” Acta Metall. 30 1269–1279 (1982).

    Article  Google Scholar 

  48. A. D. Rollett, D. J. Srolovitz, and M. P. Anderson, “Simulation and theory of abnormal grain growth–aniostropic grain boundary energies and mobilities,” Acta Metall. 37 [4] 1227–1240 (1989).

    Article  CAS  Google Scholar 

  49. W. D. Kingery, B. Francois, “The sintering of crystalline oxides, I. Interactions between grain boundaries and pores,” in: Sintering and Related Phenomena, Ed. G. C. Kuczynski, N. Hooten, and C. Gibbon, Gordon and Breach, NY (1967) 471–499.

    Google Scholar 

  50. A. G. Evans, C. H. Hsueh, “Behavior of Large Pores During Sintering and Hot Isostatic Pressing,” J. Amer. Ceram. Soc. 69 [6] 444–48 (1986).

    Article  CAS  Google Scholar 

  51. J. E. Blendell, C. A. Handwerker, “Effect of Chemical Composition on Sintering of Ceramics,” J. Crystal Growth 75 138–160 (1986).

    Article  CAS  Google Scholar 

  52. C. A. Handwerker, J. M. Dynys, R. M. Cannon, and R. L. Coble, “Dihedral Angles in MgO and Al203: Distributions from Surface Thermal Grooves,” accepted by J. Amer. Ceram. Soc.

    Google Scholar 

  53. C. A. Handwerker, J. M. Dynys, R. M. Cannon, and R. L. Coble, “Metal Reference Line Technique for Obtaining Dihedral Angles from Surface Thermal Grooves,” accepted by J. Amer. Ceram. Soc.

    Google Scholar 

  54. T. Ikegami, K. Kotani, “Some Roles of MgO and TiO2 in Densification of a Sinterable Alumina,” J. Amer. Ceram. Soc. 70 [12] 885–90 (1987).

    Article  CAS  Google Scholar 

  55. Y. Finkelstein, S. M. Wiederhorn, B. J. Hockey, C. A. Handwerker, and J. E. Blendell,“Migration of Sapphire Interfaces into Vitreous Bonded Aluminum Oxide”, in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  56. J. Rödel, A. M. Glaeser, “Morphological Evolution of Pore Channels in Alumina”, in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  57. J. Rödel, A. M. Glaeser,“Pore Drag in Alumina,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  58. J. W. Rödel, Application of Controlled Interfacial Pore Structures to Pore Perturbation and Pore Drag in Alumina, Ph.D thesis, University of California, Berkeley, 1988 (LBL Publication No. LBL-26211).

    Google Scholar 

  59. W. A. Kaysser, M. Sprissler, C. A. Handwerker, and J. E. Blendell, “Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina,” J. Amer. Ceram. Soc. 70 [5] 339–343 (1987).

    Article  CAS  Google Scholar 

  60. J. E. Burke,“Control of Grain Boundary Mobility,” in: Ceramic Transactions Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  61. J. Zhao, M. P. Harmer, “Sintering of Ultra-High-Purity Alumina Doped Simultaneously with MgO and FeO,” J. Amer. Ceram. Soc. 70 [12] 860–66 (1987).

    Article  CAS  Google Scholar 

  62. F. F. Lange, T. Yamaguchi, B. I. Davis, P. E. D. Morgan, “Effect of ZrO2 Inclusions on the Sinterability of Al2O3,” J. Amer. Ceram. Soc. 71 [6] 446–48 (1988).

    Article  CAS  Google Scholar 

  63. W.H. Rhodes, “Controlled Transient Solid Second-Phase Sintering of Yttria,” J. Amer.Cer. Soc. 64 [1] 13–19 (1981).

    Article  CAS  Google Scholar 

  64. D. L. Olgaard, B. Evans, “Effect of Second-Phase Particles on Grain Growth in Calcite, J. Amer. Ceram. Soc. 69 [11] C-272-C-277 (1986).

    Google Scholar 

  65. P. K. Gallagher, D. W. Johnson, Jr., and F. Schrey, “Some Effects of the Source and Calcination of Iron Oxide on Its Sintering Behavior,” Bull. Amer. Ceram. Soc. 55 [6] 589–593 (1976).

    CAS  Google Scholar 

  66. S. J. Bennison, M. P. Harmer, “Effect of MgO Solute on the Kinetics of Grain Growth in Al2O3,” J. Amer. Ceram. Soc. 66 [5] C90 - C92 (1983).

    Article  CAS  Google Scholar 

  67. S. J. Bennison, M. P. Harmer, “Grain-Growth Kinetics for Alumina in the Absence of a Liquid Phase,” J. Amer. Ceram. Soc. 68 [1] C22 - C24 (1985).

    Article  CAS  Google Scholar 

  68. C. A. Handwerker, P. A. Morris, R. L. Coble, “Effects of Chemical Inhomogeneities on Grain Growth and Microstructure in Al2O3,” J. Amer. Ceram. Soc. 72 [1] 130–36 (1989).

    Article  CAS  Google Scholar 

  69. M. H. Drofenik, “Grain Growth During Sintering of Donor-Doped BaTiO3i” J. Amer. Ceram. Soc. Vol. 69, 1986, [1] C-8-C-9.

    Google Scholar 

  70. D. F. K. Hennings, R. Janssen, P. J. L. Reynen, “Control of Liquid- Phase-Enhanced Discontinuous Grain Growth in Barium Titanate,” J. Amer. Ceram. Soc. Vol. 70, 1987, [1] 23–27.

    Article  CAS  Google Scholar 

  71. D. Kolar,“Discontinuous Grain Growth in Multiphase Ceramics,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, The American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  72. C. A. Handwerker, Sintering and Grain Growth of MgO, Sc.D Thesis, M.I.T., Cambridge MA, 1983.

    Google Scholar 

  73. P. A. Morris, “Impurities in Ceramics: Processing and Effects on Properties,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  74. P. A. Morris, High-Purity Al 2 03: Processing and Grain Boundary Structures, Ph.D Thesis, M.I.T., Cambridge MA, June 1986.

    Google Scholar 

  75. P. A. Morris, R. H. French, R. L. Coble, F. N. Tebbe, U. Chowdhry, “Clean-Room and CO2-Laser Processing of Ultra High-Purity Al2O3,” in Defect Properties and Processing of High- Technology Nonmetallic Materials, Ed. Y. Chen, 60, Materials Research Society, Pittsburgh, PA, 1986, p. 79.

    Google Scholar 

  76. S. J. Bennison, The Effect of MgO on the Sintering of High Purity Alumina, Ph.D Thesis, Lehigh University, 1987.

    Google Scholar 

  77. J. E. Blendell, H. K. Bowen, and R. L. Coble, “High Purity Alumina by Controlled Precipitation from Aluminum Sulfate Solutions,” Bull. Amer. Ceram. Soc. 63 797–804 (1984).

    CAS  Google Scholar 

  78. J. W. Cahn,“Grain Rotation in Sintering: An Examination of Driving Force Arguments,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  79. S. Prochazka,“Surface Area, Average Mean Curvature and Chemical Potential in Porous Bodies,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  80. D. J. Green, C. Nader, and R. Brezny, “The Elastic Behavior of Partially-Sintered Alumina,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell. and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  81. K. G. Frase, K. Hardman-Rhyne, “Porosity in Spinel Compacts Using Small-Angle Neutron Scattering,” J. Amer. Ceram. Soc. 71 [1] 1–6 (1988).

    Article  CAS  Google Scholar 

  82. R. K. Bordia, R. Raj, “Sintering of TiO2-Al2O3 Composites: A Model Experimental Investigation,” J. Amer. Ceram. Soc. 71 302–310 (1988).

    Article  CAS  Google Scholar 

  83. J. P. Smith, G. L. Messing, “Sintering of Bi-modally Distributed Alumina Powders,” J. Amer. Ceram. Soc. 67 238–42 (1984).

    Article  CAS  Google Scholar 

  84. B. Kellett, F. F. Lange, “Stresses Induced by Differential Sintering in Powder Compacts,” J. Amer. Ceram. Soc. 67 369–71 (1984).

    Article  CAS  Google Scholar 

  85. L. C. DeJonghe, M. N. Rahaman, and C. H. Hsueh, “Transient Stresses in Bimodal Compacts During Sintering,” Acta Metall. 34 1467–71 (1986).

    Article  CAS  Google Scholar 

  86. M. W. Weiser, L. C. De Jonghe, “Inclusion Size and Sintering of Composite Powders,” J. Amer. Ceram. Soc. 71 C125–127 (1988).

    Article  CAS  Google Scholar 

  87. R. K. Bordia, G. W. Scherer,“On Constrained Sintering–Parts I, II, and III, ” Acta Metall. 36 2393–2416 (1988).

    Article  CAS  Google Scholar 

  88. L. C. DeJonghe, M. N. Rahaman, “Sintering stress of homogeneous and heterogeneous powder compacts,” Acta Metall. 36 223–229 (1988).

    Article  CAS  Google Scholar 

  89. M. N. Rahaman, L. C. De Jonghe, “Effect of Rigid Inclusions on Sintering,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 887–896.

    Google Scholar 

  90. C. P. Ostertag,“Reduction in Sintering Damage of Fiber-Reinforced Composites,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  91. C. P. Ostertag, “Technique for Measuring Stresses Which Occur During Sintering of a Fiber-Reinforced Ceramic Composite,” J. Amer. Ceram. Soc. 70 C355 - C357 (1987).

    Article  Google Scholar 

  92. C. P. Ostertag, P. G. Charalambides and A. G. Evans,“Observations and Analysis of Sintering Damage,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  93. W. H. Tuan, E. Gilbert, and R. J. Brook, “Sintering of heterogeneous ceramic compacts,” J. Mat. Sci. 24 1062–68 (1980).

    Article  Google Scholar 

  94. M. Ciftcioglu, M. Akinc, and L. Burkhart, “ Effect of Agglomerate Strength on Sintered Density for Yttria Powders Containing Agglomerates of Monosize Spheres,” J. Amer. Ceram. Soc. 70 C329 - C334 (1987).

    Article  CAS  Google Scholar 

  95. T. N. Tiegs, P. F. Becher, “Sintered Al203-SiC-Whisker Composites,” Bull. Amer. Ceram. Soc. 66 339–42 (1987).

    CAS  Google Scholar 

  96. S. Kamiya, H. K. Bowen; “Microstructural Control of Al203-TiO2 Composites by Cyclic Annealing,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 978–985.

    Google Scholar 

  97. M. P. Borom, M. Lee, “Effect of Heating Rate on Densification of Alumina-Titanium Carbide Composites,” Adv. Ceram. Mat. 1 335–40 (1986).

    CAS  Google Scholar 

  98. G. Valentine, A. N. Palazotto, R. Ruh, and D. C. Larsen, “Thermal Shock Resistance of SiC-BN Composites,” Adv. Ceram. Mat. 1 81–87 (1986).

    CAS  Google Scholar 

  99. G. L. Messing, M. Kumagai, “Low Temperature Sintering of Seeded Sol-GelDerived, Zr02-Toughened Al203 Composites,” J. Amer. Ceram. Soc. 72 40–44 (1989).

    Article  CAS  Google Scholar 

  100. M. Ishitsuka, T. Sato, T. Endo, M. Shimada, “Sintering and Mechanical Properties of Yttria-Doped Tetragonal Zr02 Polycrystal/Mullite Composites,” J. Amer. Ceram. Soc. 70 [11] C342 - C346 (1987).

    Article  CAS  Google Scholar 

  101. M. N. Rahaman, L. C. DeJonghe, S. L. Shinde, P. H. Tewari; “Sintering and Microstructure of Mullite Aerogels,” J. Amer. Ceram. Soc. 71 [7] C338 - C341 (1988).

    Article  CAS  Google Scholar 

  102. M. N. Rahaman, D.-Y. Jeng, “Sintering of Mullite and Mullite- Matrix Composites,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker. J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  103. Y.L. Tian, D. L. Johnson, and M. E. Brodwin, “Microwave Sintering of Al203Zr02 Composites,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 933–938.

    Google Scholar 

  104. D. K. Kim, C. H. Kim, “Pressureless Sintering and Microstructural Development of B4C-TiB3 Composites,” Adv. Ceram. Mat. 3 52–55 (1988).

    CAS  Google Scholar 

  105. M. N. Rahaman, L. C. De Jonghe, “Effect of Rigid Inclusions on Sintering of Glass Powder Compacts,” J. Amer. Ceram. Soc. 70 C348 - C351 (1987).

    Article  CAS  Google Scholar 

  106. C.-H. Hsueh, A. G. Evans, R. M. Cannon, and R. J. Brook, “Viscoelastic Stresses and Sintering Damage in Heterogeneous Powder Compacts,” Acta Metall. 34 927–36 (1986).

    Article  CAS  Google Scholar 

  107. R. K. Bordia, G. W. Scherer, “Sintering of Composites: A Critique of Available Analyses,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 872–886.

    Google Scholar 

  108. G. W. Scherer, “Viscous Sintering with a Pore-Size Distribution and Rigid Inclusions,” J. Amer. Ceram. Soc. 71 [10] C447 - C448 (1988).

    Article  CAS  Google Scholar 

  109. G. W. Scherer, “Sintering of Rigid Inclusions,” J. Amer. Ceram. Soc. 70 719–725 (1987).

    Article  CAS  Google Scholar 

  110. C.-H. Hsueh, “Comment on ”Sintering with Rigid Inclusions“,” J. Amer. Ceram. Soc. 71 C314 - C315 (1988).

    CAS  Google Scholar 

  111. G. W. Scherer, “Reply,” J. Amer. Ceram. Soc. 71 C315–316 (1988).

    CAS  Google Scholar 

  112. C.-H. Hsueh, “Sintering of Whisker-Reinforced Ceramics and Glasses,” J. Amer. Ceram. Soc. 71 C441 - C444 (1988).

    Google Scholar 

  113. Kurt R. Mikeska, George W. Scherer, and Rajendra K. Bordia, “Constitutive Behavior of Sintering Materials,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  114. R. K. Bordia, R. Raj, “Hot Isostatic Pressing of Ceramic/Ceramic Composites at Pressures lOMPa,” Adv. Ceram. Mat. 3 122–26 (1988).

    CAS  Google Scholar 

  115. P. A. Mataga,“Retardation of Sintering in Heterogeneous Powder Compacts,” in: Ceramic Transactions,Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  116. R. M. German, Liquid Phase Sintering, Plenum Press, New York, 1985.

    Google Scholar 

  117. R. B. Heady and J. W. Cahn, “An Analysis of Capillary Force in Liquid Phase Sintering,” Met. Trans. 1 185 (1970).

    CAS  Google Scholar 

  118. J. W. Cahn and R. B. Heady, “Analysis of Capillary Force in Liquid Phase Sintering of Jagged Particles,” J. Amer. Ceram. Soc. 53 [7] 406 (1970).

    Article  CAS  Google Scholar 

  119. H. Park, S. Cho, and D. N. Yoon, “Pore Filling During Liquid Phase Sintering,” Met. Trans. A. 15A 1075–80 (1984).

    Article  Google Scholar 

  120. T. M. Shaw, “Liquid Redistribution during Liquid Phase Sintering,” J. Amer. Ceram. Soc. 69 [1] 27–34 (1986).

    Article  CAS  Google Scholar 

  121. W. D. Kingery, “Densification during Sintering in the Presence of a Liquid Phase: I. Theory,” J. Appl. Phys. 30 [3] 301–306 (1959).

    Article  CAS  Google Scholar 

  122. D. R. Clarke, “On the Equilibruim Thickness of Intergranular Glass Phases,” J. Amer. Ceram. Soc. 70 [1] 15–22 (1987).

    Article  CAS  Google Scholar 

  123. P. Greil, J. Weiss, “Evaluation of Microstructure of ß-SiA1ON Solid solution Materials Containing Different Amounts of Amorphous Grain Boundary Phase,” J. Mat. Sci. 17 1571 (1982).

    Article  CAS  Google Scholar 

  124. J. E. Marion, C. H. Hsueh, and A. G. Evans, “Liquid Phase Sintering of Ceramics,” J. Amer. Ceram. Soc. 70 [10] 708–13 (1987).

    Article  CAS  Google Scholar 

  125. W. A. Kaysser, “Sintering and HIP with a Liquid Phase,”in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, The American Ceramic Society, Westerville, Ohio, 1988, 955–968.

    Google Scholar 

  126. L. C. DeJonghe, V. Srikanth, “Liquid-Phase Sintering of MgO-Bi203,” J. Amer. Ceram. Soc. 71 [7] C356 - C358 (1988).

    CAS  Google Scholar 

  127. D. F. K. Hennings, R. Janssen, P. J. L. Reynen, “Control of Liquid-PhaseEnhanced Discontinuous Grain Growth in Barium Titanate,” J. Amer. Ceram. Soc. 70 [1] 23–27 (1987).

    Article  CAS  Google Scholar 

  128. U.-C. Oh, Y.-S. Chung, D.-Y. Kim, and D. N. Yoon, “Effect of Grain Growth on Pore Coalescence During the Liquid-Phase Sintering of MgO-CaMgSiO4 Sys-tems,” J. Amer. Ceram. Soc. 71 110] 854–57 (1988).

    Google Scholar 

  129. P.L. Flaitz, J.A. Pask, “Penetration of Polycrystalline Alumina by Glass at High Temperatures,” J. Amer. Ceram. Soc. 70, 449–455 (1987).

    Article  CAS  Google Scholar 

  130. H. Song, R. L. Coble, Liquid Phase Sintered Al2O3: I, Origin and growth kinetics of plate-like abnormal grains and II, Morphology of plate-like abnormal grains, submitted to J. Amer. Ceram. Soc.

    Google Scholar 

  131. D.-D. Lee, S.-J. L. Kang, and D. N. Yoon, “Mechanism of Grain Growth and a — ß’ Transformation During Liquid-Phase Sintering of ß’-Sialon,” J. Amer. Ceram. Soc. 71 [9] 803–808 (1988).

    Article  Google Scholar 

  132. For example, B. Lewis, “Nucleation and crystal growth,” in: Crystal Growth, Ed. B. Pamplin, Pergamon Press, New York, 1975, pp. 12–39.

    Google Scholar 

  133. A. Nohara, T. Nakagawa, T. Soh, T. Shinke, “Numerical Simulation of the Densification Behaviour of Metal Powder During Hot Isostatic Pressing,” Inter. J. Numer. Methods in Engineering 25 213–225 (1988).

    Article  Google Scholar 

  134. M. Oyane, S. Shima, Y. Kono, “Theory of Plasticity for Porous Metals,” Bull. JSME 16 [99] 1254–1262 (1973).

    Article  CAS  Google Scholar 

  135. B. Aren, E. Navara, “Modelling Shape Change of Parts Produced by Hot Isostatic Pressing of Powders,” Powder Metallurgy 31 [2] 101–105 (1988).

    Google Scholar 

  136. M. Abouaf, J. L. Chenot, G. Raisson, P. Bauduin, “Finite Element Simulation of Hot Isostatic Pressing of Metal Powders,” Inter. J. Numer. Methods in Engineering 25 191–212 (1988).

    Article  Google Scholar 

  137. J. Besson, M. Abouaf, “Numerical Simulation of Hot Isostatic Pressing of Ceramic Powders, International Conference on Hot Isostatic Pressing of Materials, Antwerp 25–27 April, 1988.

    Google Scholar 

  138. W-B. Li, M. F. Ashby, K. E. Easterling, “On Densification and Shape Change During Hot Isostatic Pressing,” Acta Metall. 35 [12] 2831–2842 (1987).

    Article  CAS  Google Scholar 

  139. W. Li, K. E. Easterling, “Stresses Developed in the Hot Isostatic Pressing of Metals and Ceramics,” Holanilulea Mechanical Report, 1287:48T, 1–21, 1987

    Google Scholar 

  140. C. Brodhag, F. Thevenot, “Progress in Hot Pressing: Transitory Phenomena during Temperature Chenges,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 947–954.

    Google Scholar 

  141. M. M. Rahaman, L. C. De Jonghe, C. H. Hsueh, “Creep During Sintering of Porous Compacts,” J. Amer. Ceram. Soc. 69 [1] 58–60 (1986).

    Article  CAS  Google Scholar 

  142. M. Lin, M. N. Rahaman, L. C. DeJonghe, “Creep-Sintering and Microstructure Development of Heterogeneous MgO Compacts,” J. Amer. Ceram. Soc. 70 [5] 360–366 (1987).

    Article  CAS  Google Scholar 

  143. K. R. Venkatachari, R. Raj, “Enhancement of Strength through Sinter Forging” J. Amer. Ceram. Soc. 70 [7] 514–20 (1987).

    Article  CAS  Google Scholar 

  144. A. P. Druschitz, “Processing Zirconia by Sintering/Hot Isostatic Pressing,” Advanced Ceramic Materials, 3 [3] 254–56 (1988).

    CAS  Google Scholar 

  145. S. T. Lin, R. M. German, “Compressive Stress for Large-Pore Removal in Sintering,” J. Amer. Ceram. Soc. 71 [10] C-432-C-433 (1988).

    Google Scholar 

  146. B. J. Kellett, F. F. Lange, “Hot Forging Characteristics of Fine Grained ZrO2 and Al2O3/ZrO2 Ceramics,” J. Amer. Ceram. Soc. 69 [8] C-172-C-173 (1986).

    Google Scholar 

  147. T. Hattori, M. Yoshimura, S. Somiya, “High-Pressure Hot Isostatic Pressing of Synthetic Mica,” J. Amer. Ceram. Soc. 69 [8] C-182-C-183 (1986).

    Google Scholar 

  148. B. K. Lograsso, D. A. Koss, “Densification of Titanium Powder During Hot Isostatic Pressing,” Met. Trans. 19A 1767–1773 (1988).

    Article  Google Scholar 

  149. James G. Schroth, Alan P. Druschitz,“ Optimizing Unencapsulated Hot Isostatic Pressing of Al2O3,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  150. H. Schubert, W. A. Kaysser,“HIPing of Alumina,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  151. B. J. Kellett, F. F. Lange, “Experiments on Pore Closure During Hot Isostatic Pressing and Forging,” J. Amer. Ceram. Soc. 71 [1] 7–12 (1988).

    Article  CAS  Google Scholar 

  152. A. S. Helle, K. E. Easterling, M. F. Ashby, “Hot-Isostatic Pressing Diagrams: New Developments,” Acta Metall. 33 [12] 2163–2174 (1985).

    Article  CAS  Google Scholar 

  153. S. Nair, J. K. Tien, “Densification Mechanism Maps for Hot Isostatic Pressing (HIP) of Unequal Sized Particles,” Met. Trans. A, 18A (1987) 97–107.

    Article  Google Scholar 

  154. Science and Technology of Zirconia III, Ed. S. Somiya, N. Yamamoto, H. Yanagida, (Advances in Ceramics, Vol 24 ), American Ceramic Society, Westerville, OH, 1988.

    Google Scholar 

  155. S. Somiya, M. Yoshimura, “Microstructure Development of Hydrothermal Powders and Ceramics,” in: Ceramic Microstructures ‘86 Role of Interfaces (Materials Science Research), 21 464–475.

    Google Scholar 

  156. J.-M. Wu, C.-H. Wu, “Sintering Behavior of Highly Agglomerated Ultrafine Zirconia Powders,” J. Mat. Sci. 23 3290–3299 (1988).

    Article  CAS  Google Scholar 

  157. S. Blackburn, M. P. Hitchiner, C. R. Kerridge, “Green Density Characteristics and Densification Kinetics of PSZ Powders Produced by Electro-Refinning,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 864–865.

    Google Scholar 

  158. J.-G. Duh, H.-T. Dai, “Sintering, Microstructure, Hardness and Fracture Toughness Behavior of Y203-CeO2-ZrO2i” J. Amer. Ceram. Soc. 71 [10] 813–19 (1988).

    Article  CAS  Google Scholar 

  159. J.-G. Duh, 11.-T. Dai, W.-Y. Hsu, “Synthesis and Sintering Behavior in CeO2ZrO2 Ceramics,” J. Mat. Sci. 23 2786–2791 (1988).

    Article  CAS  Google Scholar 

  160. R. M. Dickerson, M. V. Swain, A. H. Heuer, “Microstructural Evolution in Ca-PSZ and the Room-Temperature Instability of Tetragonal ZrO2,” J. Amer. Ceram. Soc. 70 [4] 214–20 (1987).

    Article  CAS  Google Scholar 

  161. C. L. Lin, D. Gan, P. Shen, “Stabilization of Zirconia Sintered with Titanium,” J. Amer. Ceram. Soc. 71 [8] 624–29 (1988).

    Article  CAS  Google Scholar 

  162. M. Ishitsuka, T. Sato, T. Endo, M. Shimada, “Sintering and Mechanical Properties of Yttria-Doped Tetragonal ZrO2 Polycrystal/Mullite Composites,” J. Amer. Ceram. Soc. 70 [11] C342 - C346 (1987).

    Article  CAS  Google Scholar 

  163. -Y. Lu, J.-S. Bow, “Effect of MgO Addition on the Microstructure Development of 3 mol% Y203-ZrO2i” J. Amer. Ceram. Soc. 72 [2] 228–31 (1989).

    Article  CAS  Google Scholar 

  164. E. Min-Hags, W. D. Scott, “Sintering and Mechanical Properties of ZrC-ZrO2 Composites,” J. Mat. Sci. 23 2865–2870 (1988).

    Article  Google Scholar 

  165. P. C. Panda, J. Wang, R. Raj, “Sinter-Forging Characteristics of Fine-Grained Zirconia,” J. Amer. Ceram. Soc. 72 [12] C-507-C-509 (1988).

    Google Scholar 

  166. G. Zhilun, L. Longtu, G. Suhua, Z. Ziaowen, “Low Temperature Sintering of Lead-Based Piezoelectric Ceramics,” J. Amer. Ceram. Soc. 72 [3] 486–91 (1989).

    Article  Google Scholar 

  167. J. P. Guha, H. U. Anderson, “Reaction During Sintering of Barium Titanate with Lithium Fluoride,” J. Amer. Ceram. Soc. 69 [8] C193 - C194 (1986).

    Article  Google Scholar 

  168. G. M. Dynna, Y.-M. Chiang, “Mechanisms of Grain Growth Enhancement and Inhibition in Donor-Doped Barium Titanate,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  169. J.-S. Chen, R.-J. Young, T.-B. Wu, “Densification and Microstructural Development of SrTiO3 sintered with V2O5,” J. Amer. Ceram. Soc. 70 [10] C260–264 (1987).

    Article  Google Scholar 

  170. V. L. Richards, “Agglomerate Size Effect on Sintering of Doped Lanthanum Chromite,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 897–898.

    Google Scholar 

  171. J. P. Guha, D’. J. Hong, H. U. Anderson, “Effect of Excess PbO on the Sintering Characteristics and Dielectric Properties of Pb(Mg113Nb2/3)03-Based Ceramics,” J. Amer. Ceram. Soc. 71 [3] C152 - C154 (1988).

    Article  CAS  Google Scholar 

  172. J. P. Guha, H. U. Anderson, “Microstructural Inhomogeneity in Sintered Pb(Mg1,3Nb2/3)03-PbTiO3 Based Dielectrics,” J. Amer. Ceram. Soc. 70 [3] C39 - C40 (1987).

    Article  Google Scholar 

  173. M. F. Yan, W. W. Rhodes, “Sintering, Microstructures and Dielectric Properties of Pb(Mg1/3Nb2/3)03 Composition,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  174. Y.-S. Yoo, J.-J. Kim and D.-Yeon Kim, “Effect of Heating Rate on the Microstructural Evolution During Sintering of BaTiO3 Ceramics,” J. Amer. Ceram. Soc. 70 [11] C322 - C324 (1987).

    Article  CAS  Google Scholar 

  175. Z. S. Ahn, W. A. Schulze, “Conventionally Sintered (Nao.s, Ko.5)NbO3 with Barium Additions,” J. Amer. Ceram. Soc. 70 [1] C18 - C21 (1987).

    Article  Google Scholar 

  176. C. E. Baumgartner, “Fast Firing and Conventional Sintering of Lead Zirconate Titanate Ceramic,” J. Amer. Ceram. Soc. 71 [7] C350–353 (1988).

    Article  CAS  Google Scholar 

  177. B.-S. Chiou, S.-T. Lin, J.-G. Duh, “The Effect of Sintering Conditions on the Grain Growth of the BaTiO3-Based GBBL Capacitors,” J. Mat. Sci. 23 38893893 (1988).

    Google Scholar 

  178. P. Duran, J. F. F. Lozano, F. Capel, C. Moure, “Large Electromechanical Anisotropic Modified Lead Titanate Ceramics,” Journal of Materials Science 23 4463–4469. (1988).

    Article  CAS  Google Scholar 

  179. T. Kimura, T. Yoshimoto, FN. Lida, Y. Fujita, T. Yamaguchi, “Mechanism of Grain Orientation During Hot-Pressing of Bismuth Titanate,” J. Amer. Ceram. Sco. 72 [1] 85–89 (1989).

    Article  CAS  Google Scholar 

  180. J. P. Gambino, W. D. Kingery, G. E. Pike, L. M. Levinson, H. R. Phillipp, “Effect of Heat Treatments on the Wetting Behavior of Bismuth- Rich Intergranular Phases in ZnO:Bi:Co Varistors,” J. Amer. Ceram. Soc. 72 [4] 642–45 (1989).

    Article  CAS  Google Scholar 

  181. J. Kim, T. Kimura, T. Yamaguchi, “Sintering of Sb2O3-doped ZnO,” J. Mat. Sci. 24 (1989) 213–219 (1989).

    Article  CAS  Google Scholar 

  182. J.E. Blendell, J.S. Wallace, M.J. Hill, “Effect of Poe on Microstructure of Ba2YCu3Os+z,” submitted to J. Am Ceram. Soc. 1989.

    Google Scholar 

  183. R.S. Roth, C.J. Rawn, F. Beech, J.D. Whitler, J.O. Anderson, “Phase Equilibria in the System Ba-Y-Cu-O-CO2 in Air,” Ceramics Superconductors II–Research Update, 243–251 (1988).

    Google Scholar 

  184. T. Aselage, K. Keefer, “Liquidus Relations in Y-Ba-Cu Oxides,” J. Mat. Res. 3 [6] 1279–1291 (1988).

    Article  CAS  Google Scholar 

  185. J.E. Ullman, R.W. McCallum, J.D. Verhoeven, “Effect of Atmosphere and Rare Earth on Liquidus Relations in RE-Ba-Cu Oxides,” J. Mat. Res., 4 [4] 752–755 (1989).

    Article  CAS  Google Scholar 

  186. K. Sadananda, A. K. Singh, M. A. Iman, M. Osofsky, V. Le Tourneau, L. E. Richards, “Effect of Hot Isostatic Pressing on RBa2Cu3O7 Superconductors,” Adv. Ceram. Mat. 3 [5] 524–26 (1988).

    CAS  Google Scholar 

  187. J. J. Rha, K. J. Yoon, S.-J. L. Kang, D. N. Yoon, “Rapid Calcination and Sintering of YBa2Cu3Oz Superconductor Powder Mixture in Inert Atmosphere,” J. Amer. Ceram. Soc. 71 [7] C328 - C329 (1988).

    Article  CAS  Google Scholar 

  188. P. Sarkar, T. B. Troczynski, K. J. Vaidya, P. S. Nicholson, “Reaction Sintering of YBa2Cu3Oz in Different Oxygen partial Pressures,” Ceramics Superconductors II–Research Update, 204–215 (1988).

    Google Scholar 

  189. J. S. Wallace, B. A. Bender, S. H. Lawrence, and D. J. Schrodt, “Reaction Sintering High-Density, Fine-Grained Ba2YCu3Os.5+= Superconductors Using Ba(OH)2H2O,” Ceramics Superconductors II–Research Update, 243–251 (1988).

    Google Scholar 

  190. K. Sawano, A. Hayashi, T. Ando, T. Inuzuka, H. Kubo, “Processing of Superconducting Ceramics for High Critical Current Density,” Ceramics Superconductors II–Research Update, 282–293 (1988).

    Google Scholar 

  191. P. Sainamthip, V. R. W. Amarakoon, “Role of Zinc Volatilization on the Microstructure Development of Manganese Zinc Ferrites,” J. Amer. Ceram. Soc. 71 [8] 644–48 (1988).

    Article  CAS  Google Scholar 

  192. J. T. Mullin, R. J. Willey, “Grain Growth of Ti-Substituted Mn-Zn Ferrites,” Fourth International Conference on Ferrites Part 1 (Advances in Ceramics, Vol. 15), American Ceramic Society, Westerville, OH, 1985, 187–191.

    Google Scholar 

  193. H. Rikukawa, I. Sasaki, “On the Sintering Atmosphere of Mn-Zn Ferrites,” Fourth International Conference on Ferrites Part 1 (Advances in Ceramics, Vol. 15), American Ceramic Society, Westerville, OH, 1985, 215–219.

    Google Scholar 

  194. C. M. Srivastava, N. Venkataramani, R. Aiyar, “Studies on the Sintering Mechanism and on Texturization in the Hot-Pressed System (Mn, Zn, Fe)Fe2O4i” Fourth International Conference on Ferrites Part 1 (Advances in Ceramics, Vol. 15), American Ceramic Society, Westerville, OH, 1985, 193–200.

    Google Scholar 

  195. Fourth International Conference on Ferrites, Ed. F.F.Y. Wang, Advances in Ceramics, Vol. 15, Amer. Ceramic Society, Westerville, OH, 1985.

    Google Scholar 

  196. K. Omatsu, T. Kumura, T. Yamaguchi, “Sintering of Acicular NiZn- Ferrite Powder,” Ceramic Microstructures ‘86–Role of Interfaces (Materials Science Research), 21 623–631 (1986).

    Google Scholar 

  197. S. Komarneni, E. Fregeau, E. Breval, R. Roy, “Hydrothermal Preparation of Ultrafine Ferrites and Their Sintering,” J. Amer. Ceram. Soc. 71 [1] C26 - C28 (1988).

    Article  CAS  Google Scholar 

  198. F. J. C. M. Toolenaar, M. T. J. Verhees, “Reactive Sintering of Zinc Ferrite,” J. Mat. Sci. 23 856–861 (1988).

    Article  CAS  Google Scholar 

  199. P. Kishan, D. R. Sagar, S. N. Chatterjee, J. K. Nagpaul, N. Kumar, K. K. Laroia, “Optimization of Bi2O3 Content and Its Role in Sintering of Lithium Ferrites,” Fourth International Conference on Ferrites Part 1 (Advances in Ceramics Vol 15), Amer. Ceramic Society, Westerville, OH, 1985, 207–213.

    Google Scholar 

  200. C. Greskovich, S. Prochazka, “Selected Sintering Conditions for SiC and Si3N4 Ceramics,” Ceramic Microstructures ‘86–Role of Interfaces, Materials Science Research, 21 601–610 (1986).

    Google Scholar 

  201. T. M. Shaw, B. A. Pethica, “Preparation and Sintering of Homogeneous Silicon Nitride Green Compacts,” J. Am Ceram. Soc. 69 [1] 88–93 (1986).

    Article  CAS  Google Scholar 

  202. B. A. Bishop, M. S. Spotz, W. E. Rhine, H. K. Bowen, J. R. Fox, “Sintering of Silicon Carbide Prepared From a Polymeric Precursor,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 856–857.

    Google Scholar 

  203. William J. Hurley, Jr., Leonard V. Interrante, Roberto Garcia, and Robert H. Doremus,“ Sintering and Microstructural Studies of Nanosized Crystalline Si3N4 and Si3N4/A1N Powders Derived from Organometallic Precursors,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  204. O. J. Gregory, S.-B. Lee, R. C. Flagan, “Reaction Sintering of Submicrometer Silicon Powder,” J. Amer. Ceram. Soc. 70 [3] C-52-C-55 (1987).

    Google Scholar 

  205. J. A. Palm, C. D. Greskovich, “Thermomechanical Properties of Hot- Pressed Si2.9Be0.1N3.8O0.2 Ceramic,” Bull. Amer. Ceram. Soc. 59 [4] 447–452 (1980).

    CAS  Google Scholar 

  206. S. Bandyopadhyay, J. Mukerji, “Sintering and Properties of Sialons without Externally Added Liquid Phase,” J. Amer. Ceram. Soc. 70 [10] C273–277 (1987).

    Article  Google Scholar 

  207. C. Greskovich, W. D. Pasco, G. D. Quinn, “Thermomechanical Properties of a New Composition of Sintered Si3N4,” Bull. Amer. Ceram. Soc. 60 [9] 1165–1170 (1984).

    Google Scholar 

  208. W. A. Sanders, D. M. Mieskowski, “Strength and Microstructure of Si3N4 with Zr02 Additions,” Adv. Ceram. Mat. 1 166–73 (1986).

    CAS  Google Scholar 

  209. M. H. Lewis, G. Leng-Ward, and C. Jasper, “Sintering Additive Chemistry in Controlling Microstructure and Properties of Nitride Ceramics,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, The American Ceramic Society, Westerville, Ohio, 1988, 1019–1033.

    Google Scholar 

  210. P. K. Das, J. Mukerji, “Sintering Behavoir and Properties of Si3N4 Sintered with Nitrogen-Rich Liquid in the System Y203-AIN-Si02,” Adv. Ceram. Mat. 3 [3] 238–43 (1988).

    CAS  Google Scholar 

  211. M. Omori, H. Takei, “Preparation of Pressureless-Sintered SiC- Y203-Al203i” J. Mat. Sci. 23 3744–3749 (1988).

    Article  CAS  Google Scholar 

  212. N. Hirosaki, A. Okada, K. Matoba, “Sintering of Si3N4 with the Addition of Rare-Earth Oxides,” J. Amer. Ceram. Soc. 71 [3] C-144-C-147 (1988).

    Google Scholar 

  213. L. Cordrey, D. E. Niesz, and D. J. Shanefield,“Sintering of Silicon Carbide with Rare-Earth Additions,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, The American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  214. T Takahashi,“The Sintering Behavior of Y203-MgO-Zr02 Doped and Y203Yb2O3 Doped Silicon Nitride,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  215. C. O’Meara, J. Sjoberg,“The Development of Microstructure in Pressureless Sintered Si2N2O Bodies,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, The American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  216. R. Jimbou, Y. Suzuki, R. Sugita, “Sintering of SiC-ZrB2/A1N Heating Element by Hot-Pressing,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  217. W.A. Sanders, G. Baaklin, “Correlation of Processing and Sintering Variables with the Strength and Radiography of Silicon Nitride,” Adv. Ceram. Mat. 3 [1] 88–94 (1988).

    CAS  Google Scholar 

  218. W.D. Carter, P.H. Holloway, C. White, R Clausing, “Boron Distribution in Sintered Silicon Carbide,” Adv. Ceram. Mat. 3 [1] 62–65 (1988).

    CAS  Google Scholar 

  219. O. Yamada, Y. Miyamoto, M. Koizumi, “High-Pressure Self-Combustion Sintering of Titanium Carbide,” J. Amer. Ceram. Soc. 70 [9] C-206-C-208 (1987).

    Google Scholar 

  220. M. Akaishi, S. Yamaoka, J. Tanaka, T. Ohsawa, O. Fukunaga, “Synthesis of Sintered Diamond with High Electrical Resistivity and Hardness,” J. Amer. Ceram. Soc. 70 [10] C237 - C239 (1987).

    Article  Google Scholar 

  221. T. Akaishi, A. B. Sawaoka, “Dynamic Compaction of Cubic Boron Nitride Powders,” J. Amer. Ceram. Soc. 69 [4] C-78-C-80 (1986).

    Google Scholar 

  222. M. A. Janney, H. D. Kimrey, “Microstructure Evolution in Microwave Sintered Alumina,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker. J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  223. M. A. Janney, H. D. Kimrey, “Microwave Sintering of Alumina at 28 GHz,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 919–924.

    Google Scholar 

  224. Y. L. Tian, H. S. Dewan, M. E. Brodwin, and D. Lynn Johnson, “Microwave Sintering Behavior of Alumina Ceramics,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  225. Y.L. Tian, D. L. Johnson, and M. E. Brodwin, “Microwave Sinteirng of Al203ZrO2 Composites,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 933–938.

    Google Scholar 

  226. J. Wilson, S. M. Kunz, “Microwave Sintering of Partially Stabilized Zirconia,” J. Amer. Ceram. Soc. 71 [1] C40 - C41 (1988).

    Article  CAS  Google Scholar 

  227. F. Okada, S. Tashiro, M. Suzuki, “Microwave Sintering of Ferrites,” Fourth International Conference on Ferrites Part 1, (Advances in Ceramics Vol 15), Amer. Ceramic Society, Westerville, OH, 1985, 201–205.

    Google Scholar 

  228. E. K. Beauchamp, M. J. Carr, R. A. Graham, “Hot-Pressing of Shock-Activated Aluminum Nitride,” Advanced Ceramic Materials, 2 [1] 79–84 (1987).

    CAS  Google Scholar 

  229. R.F. Davis, Y. Horie, R.O. Scattergood, H. Palmore, III, “Defects Produced by Shock Conditioning: An Overview,” Advances in Ceramics Vol 10, Structure and Properties of MgO and Al2O3 Ceramics, Ed. W.D. Kingery, American Ceramic Society, Westerville, OH, 1984.

    Google Scholar 

  230. D. Beruto, R. Botter, and A. W. Searcy, “The Influence of Thermal Cycling on Densification: Further Tests of a Theory,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 911–918.

    Google Scholar 

  231. D. Beruto, R. Botter, A. W. Searcy, “Influence of Temperature Gradients on Sintering: Experimental Tests of a Theory,” J. Amer. Ceram. Soc. 72 [2] 232–35 (1989).

    Article  CAS  Google Scholar 

  232. A. W. Searcy, “Theory for Sintering in Temperature Gradients: Role of Long-Range Mass Transport,” J. Amer. Ceram. Soc. 70 [3] C61 - C62 (1987).

    Article  Google Scholar 

  233. D. Beruto, R. Botter, A. W. Searcy, “The Influence of Thermal Cycling on Densification: Further Tests of a Theory,” in: Ceramic Transactions, Vol. 1, Ed. G. L. Messing, E. R. Fuller, and H. Hausner, American Ceramic Society, Westerville, Ohio, 1988, 911–912.

    Google Scholar 

  234. W. B. Johnson, T. D. Claar, G. H. Schiroky, “Preparation and Processing of Platelet Reinforced Ceramics by the Directed Reaction of Zirconium with Boron Carbide,” to be published in in Ceramic Engineering and Science Proceedings; 9 [7–8] (1989).

    Google Scholar 

  235. T. D. Claar, W. B. Johnson, C. A. Andersson, G. H. Schiroky, “Microstructure and Properties of Platelet Reinforced Ceramics Formed by the Directed Reaction of Zirconium with Boron Carbide,” to be published in: Ceramic Engineering and Science Proceedings, 9 [7–8] (1989).

    Google Scholar 

  236. D.K. Kim, C.H. Kim, “Pressureless Sintering and Microstructural Development of B4C-TiB2 Composites,” Advanced Ceramic Materials, 3 [1] 52–55 (1988).

    CAS  Google Scholar 

  237. D. Barnier, F. Thevenot, “Fabrication of ZrCzOy and ZrC.0y-ZrO2 Composite Ceramics,” In: Ceramic Transactions: Ceramic Powder Science II, Vol. 1, Edited by Gary L. Messing and Edwin R. Fuller, American Ceramic Society, Westerville, OH, 1988.

    Google Scholar 

  238. H. Nagai, K. Ohbayashi, “Effect of TiO2 on the Sintering and the Electrical Conductivity of Cr2O3,” J. Amer. Soc. 72 [3] 400–03 (1989).

    CAS  Google Scholar 

  239. D. Beruto, R. Botter, “H2O-Catalyzed Sintering of ~2 nm-Cross-Section Particles of MgO,” J. Amer. Ceram. Soc. 70 [3] 155–59 (1987).

    Article  CAS  Google Scholar 

  240. R.J. Higgins, H.K. Bowen, “Preparation and Sintering Behavior of Fine-Grained MgAl2O4-Si02 Composites,” Adv. in Ceram., Vol. 21, 691–98, 1987.

    Google Scholar 

  241. H. Okamura, E. A. Barringer, and H. K. Bowen, “Preparation and Sintering of Monosized Al2O3-TiO2 Composite Powder,” J. Amer. Ceram. Soc. 69 [2] (1986) C-22-C-24.

    Google Scholar 

  242. Y. Hirata, I.A. Aksay, “Colloidal Consolidation and Sintering Behavior of CVDProcessed Mullite Powders,” In: Ceramic Microstructures ‘86: Role of Interfaces, Mat. Sci. Res. Vol. 21. Edited by J.A. Pask and A.G. Evans.

    Google Scholar 

  243. T.J. Mroz, Jr., J. W. Laughner, “Sintered Microstructures of Seeded Mullite Gels,” in: Ceramic Transactions, Vol. 7, Eds. C. A. Handwerker, J. E. Blendell, and W. A. Kaysser, American Ceramic Society, Westerville, Ohio, 1989, in press.

    Google Scholar 

  244. T. J. Mroz, Jr.,, J. W. Laughner, “Microstructures of Mullite Sintered from Seeded Sol-Gels,” J. Amer. Ceram. Soc. 72 [3] 508–509 (1989).

    Article  CAS  Google Scholar 

  245. J. L. McArdle, G. L. Messing, “Seeding with ry-Alumina for Transformation and Microstructure Control in Boehmite-Derived a-Alumina, ” J. Amer. Ceram. Soc. 69 [5] C-98-C-101 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Handwerker, C.A., Blendell, J.E., Coble, R.L. (1989). Sintering of Ceramics. In: Uskoković, D.P., Palmour, H., Spriggs, R.M. (eds) Science of Sintering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0933-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0933-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0935-0

  • Online ISBN: 978-1-4899-0933-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics