Advertisement

Evolution of Conducting Systems and Neurotransmitters in the Anthozoa

  • I. D. McFarlane
  • D. Graff
  • C. J. P. Grimmelikhuijzen
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

We can justify studies of the sea anemone nervous system in two ways. First, as biologists we are interested in how any animal detects its surroundings and produces appropriate behavior. Secondly, more significant but difficult to prove, is that by studying the nervous system in a simple form, we will be able to discuss how the nervous system evolved. This article considers if studies of the sea anemone nervous system can contribute to this discussion.

Keywords

Circular Muscle Sphincter Muscle Spontaneous Contraction Tonic Contraction Pacemaker Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M., and O’Shea, M., 1983, Peptide cotransmitter at a neuromuscular juction, Science 221:286–289.PubMedCrossRefGoogle Scholar
  2. Anctil, M., 1987, Bioactivity of FMRFamide and related peptides on a contractile system of the coelenterate Renilla köllikeri, J. Comp, Physiol. B 157:31–38.CrossRefGoogle Scholar
  3. Anderson, P. A. V., 1980, Epithelial conduction: its properties and functions, Prog. Neurobiol. 15:161–203.PubMedCrossRefGoogle Scholar
  4. Anderson, P. A. V., and Case, J. F., 1975, Electrical activity associated with luminescence and other colonial behavior in the pennatulid Renilla köllikeri, Biol. Bull. 149:80–95.CrossRefGoogle Scholar
  5. Arai, M. N., 1985, Electrical activity associated with withdrawal and feeding of Pachycerianthus fimbriates (Anthozoa, Ceriantharia), Mar. Behav. Physiol. 12:47–56.CrossRefGoogle Scholar
  6. Audesirk, G., and Audesirk, T., 1980, Complex mechanoreceptors in Tritonia diomedea. I. Neuronal correlates of a change in behavioral responsiveness, J. Comp. Physiol. 141:111–122.CrossRefGoogle Scholar
  7. Batham, E. J., 1965, The neural architecture of the sea anemone Mimetridium cryptum, Am. Zool. 5:395–402.PubMedGoogle Scholar
  8. Berridge, M. J., and Rapp, P. E., 1979, A comparative study of the function, mechanism and control of cellular oscillators, J. exp. Biol. 81:217–279.PubMedGoogle Scholar
  9. Boothby, K. M., and McFarlane, I. D., 1986, Chemoreception in sea anemones: Betaine stimulates the prefeeding response in Urticina eques and U. felina, J. exp. Biol. 125:385–389.Google Scholar
  10. Burrows, M., 1985, Nonspiking and spiking local interneurones in the locust, in: Model Neural Networks and Behavior (A. I. Seiverston, ed.), Plenum Press, New York.Google Scholar
  11. Byrne, J. H., 1985, Neural and molecular mechanisms underlying information storage in Aplysia: implications for learning and memory, Trends in Neurosci. 8:478–482.CrossRefGoogle Scholar
  12. Carlyle, R. F., 1974, The occurrence in and action of amino acids on isolated oral sphincter preparations of the sea anemone Actinia equina, J. Physiol. (Lond.) 236:635–652.Google Scholar
  13. Cottrell, G. A., Davies, N. N., and Green, K. A., 1984, Multiple actions of a moUuscan cardioexcitatory neuropeptide and related peptides on identified Helix neurones, J. Physiol. (Lond.) 356:315–333.Google Scholar
  14. Delcomyn, F., 1980, Neural basis of rhythmic behavior in animals, Science 210:492–498.PubMedCrossRefGoogle Scholar
  15. Ewer, D. W., 1960, Inhibition and rhythmic activity of the circular muscles of Calliactis parasitica (Couch), J. exp. Biol. 37:812–831.Google Scholar
  16. Getting, P. A., 1983, Interaction of network, synaptic, and cellular properties in pattern generation, Symp. Soc. Exp. Biol. 37:89–128.PubMedGoogle Scholar
  17. Guthrie, S. C., and Gilula, N. B., 1989, Gap junction communication and development, Trends in Neurosci. 12:12–16.CrossRefGoogle Scholar
  18. Horridge, G. A., 1968, The origins of the nervous system, in: The Structure and Function of Nervous Tissue, Volume 1, pp. 1–31 (G. H. Bourne, ed.), Academic Press, New York.Google Scholar
  19. Howe, N. R., and Sheikh, Y. M., 1975, Anthopleurine: a sea anemone alarm pheromone, Science 189:386–388.PubMedCrossRefGoogle Scholar
  20. Jackson, A. J., and McFarlane, I. D., 1976, Delayed initiation of SSI pulses in the sea anemone Calliactis parasitica-, evidence for a fourth conducting system, J. exp. Biol. 65:39–552.Google Scholar
  21. Josephson, R. K., 1966, Neuromuscular transmission in a sea anemone, J. exp. Biol. 45:305–319.Google Scholar
  22. Josephson, R. K., 1974, Cnidarian neurobiology, in: Coelenterate Biology: Reviews and New Perspectives, pp. 245–280 (L. Muscatine and H. M. Lenhoff, eds.), Academic Press, New York.Google Scholar
  23. Kupfermann, I., and Weiss, K. R., 1978, The command neurone concept, Behav. Brain Sci. 1:3–39.CrossRefGoogle Scholar
  24. Lawn, I. D., 1976a, The marginal sphincter of the sea anemone Calliactis parasitica. I. Responses of intact animals and preparations, J. Comp. Physiol. 105:287–300.CrossRefGoogle Scholar
  25. Lawn, I. D., 1976b, The marginal sphincter of the sea anemone Calliactis parasitica. IL Properties of the inhibitory response, J. Comp. Physiol. 105:301–311.CrossRefGoogle Scholar
  26. Lawn, I. D., 1976c, Swimming in the sea anemone Stomphia coccinea triggered by a slow conduction system, Nature 262:708–709.PubMedCrossRefGoogle Scholar
  27. Lawn, I., D., 1980, A transmesogloeal conduction system in the swimming sea anemone Stomphia coccinea, J. exp. Biol. 83:45–52.Google Scholar
  28. Lawn, I. D., and McFarlane, I. D., 1976, Control of shell settling in the swimming sea anemone Stomphia coccinea, J. exp. Biol. 64:419–429.PubMedGoogle Scholar
  29. Lehman, H. K., and Greenberg, M. J., 1987, The actions of FMRFamide-like peptides on visceral and somatic muscles of the snail Helix aspersa, J. exp. Biol. 131:55–68.PubMedGoogle Scholar
  30. Logan, C. A., 1975, Topographic changes in responding during habituation to water-stream stimulation in sea anemones (Anthopleura elegantissima), J. Comp. Physiol. Psychol. 89:105–117.CrossRefGoogle Scholar
  31. McFarlane, I. D., 1969, Co-ordination of pedal-disk detachment in the sea anemone Calliactis parasitica, J. exp. Biol. 51:387–396.Google Scholar
  32. McFarlane, I. D., 1973a, Spontaneous electrical activity in the sea anemone Calliactis parasitica, J. exp. Biol. 58:77–90.Google Scholar
  33. McFarlane, I. D., 1973b, Multiple conduction systems and the behaviour of sea anemones, Publ. Seto Mar. Biol. Lab. 20:513–523.Google Scholar
  34. McFarlane, I. D., 1974a, Excitatory and inhibitory control of inherent contractions in the sea anemone Calliactis parasitica, J. exp. Biol. 60:397–422.PubMedGoogle Scholar
  35. McFarlane, I. D., 1974b, Control of the pacemaker system of the nerve net in the sea anemone Calliactis parasitica, J. exp. Biol. 61:129–143.PubMedGoogle Scholar
  36. McFarlane, I. D., 1975, Control of mouth opening and pharynx protrusion during feeding in the sea anemone Calliactis parasitica, J. exp. Biol. 63:615–626.PubMedGoogle Scholar
  37. McFarlane, I. D., 1976, Two slow conduction systems co-ordinate shell-climbing behaviour in the sea anemone Calliactis parasitica, J. exp. Biol. 64:431–445.PubMedGoogle Scholar
  38. McFarlane, I. D., 1978, Multiple conducting systems and the control of behaviour in the brain coral Meandrina meandrites (L.)., Proc. R. Soc. Lond., B 200:193–216.CrossRefGoogle Scholar
  39. McFarlane, I. D., 1982, Calliactis parasitica, in: Electrical Conduction and Behaviour in “Simple” Invertebrates, pp. 243–265 (G. A. B. Shelton, eds.), Clarendon Press, Oxford.Google Scholar
  40. McFarlane, I. D., 1983, Nerve net pacemakers and phases of behaviour in the sea anemone Calliactis parasitica, J. exp. Biol. 104:231–246.Google Scholar
  41. McFarlane, I. D., 1984a, Nerve nets and conducting systems in sea anemones: two pathways excite tentacle contractions in Calliactis parasitica, J. exp. Biol. 108:137–149.Google Scholar
  42. McFarlane, I. D., 1984b, Nerve nets and conducting systems in sea anemones: coordination of ipsilateral and contralateral contractions in Protanthea simplex, Mar. Behav. Physiol. 11:219–228.CrossRefGoogle Scholar
  43. McFarlane, I. D., 1985, Collapse behaviour in the primitive sea anemone Protanthea simplex, Mar. Behav. Physiol. 11:259–269.CrossRefGoogle Scholar
  44. McFarlane, I. D., 1988, Variability in the startle response of Pachycerianthus multipllcatus (Anthozoa: Ceriantharia), Comp. Biochem. Physiol. 89A:365–370.CrossRefGoogle Scholar
  45. McFarlane, I. D., Graff, D., and Grimmelikhuijzen, C. J. P., 1987, Excitatory actions of Antho-RFamide, an anthozoan neuropeptide on muscles and conducting systems in the sea anemone Calliactis parasitica, J. exp. Biol. 133:157–168.Google Scholar
  46. McFarlane, I. D., and Lawn, I. D., 1972, Expansion and contraction of the oral disc in the sea anemone Teatia felina, J. exp. Biol. 57:633–649.Google Scholar
  47. Mackie, G. O., 1970, Neuroid conduction and the evolution of conducting tissues, Quart. Rev. Biol. 45:319–332.PubMedCrossRefGoogle Scholar
  48. Mackie, G. O., Anderson, P. A. V., and Singla, C. L., 1984, Apparent absence of gap junctions in two clases of cnidaria, Biol. Bull. 167:120–123.CrossRefGoogle Scholar
  49. Marks, P. S., 1976, Nervous control of light responses in the sea anemone, Calamactis praelongus, J. exp. Biol. 65:85–96.PubMedGoogle Scholar
  50. Martin, S. M., and Spencer, A. N., 1983, Neurotransmitters in coelenterates, Comp. Biochem. Physiol. 74C:1–14.Google Scholar
  51. O’Shea, M., and Shaffer, M., 1985, Neuropeptide function: The invertebrate contribution, Ann. Rev. Neurosci. 8:171–198.PubMedCrossRefGoogle Scholar
  52. Parker, G. H., 1919, The Elementary Nervous System, Lippincott, Philadelphia.CrossRefGoogle Scholar
  53. Passano, L. M., 1973, Behavioral control systems in medusae: a comparison between hydro-and scyphomedusae, Publ. Seto Mar. Biol. Lab. 20:615–645.Google Scholar
  54. Passano, L. M., 1982, Scyphozoa and Cubozoa, in: Electrical Conduction and Behaviour in “Simple” Invertebrates, pp. 149–202 (G. A. B. Shelton, ed.), Clarendon Press, Oxford.Google Scholar
  55. Pearson, K. G., Reye, D., N., and Robertson, R. M., 1983, Phase-dependent influences of wing stretch receptors on flight rhythm in the locust, J. Neurophysiol. 49:1168–1181.PubMedGoogle Scholar
  56. Pickens, P. E., 1988, Systems that control the burrowing behaviour of a sea anemone, J. exp. Biol. 135:133–164.Google Scholar
  57. Price, D. A., and Greenberg, M. J., 1980, Pharmacology of the moUuscan cardioexcitatory neuropeptide FMRFamide, Gen. Pharmacol. 11:237–241.CrossRefGoogle Scholar
  58. Roberts, A., 1969, Conducted impulses in the skin of young tadpoles, Nature 222:1265–1266.PubMedCrossRefGoogle Scholar
  59. Robson, E. A., 1965, Some aspects of the structure of the nervous system in the anemone Calliactis, Amer. Zool. 5:503–410.Google Scholar
  60. Romanes, G. J., 1878, Further observations on the locomotor systems of medusae, Phil. Trans. R. Soc. Lond. 167:659–752.Google Scholar
  61. Ross, D. M., 1957, Quick and slow contractions in the isolated sphincter of the sea anemone, Calliactis parasitica, J. exp. Biol. 34:11–28.Google Scholar
  62. Ross, D. M., 1960a, The effects of ions and drugs on neuromuscular preparations of sea anemones. I. On preparations of the column of Calliactis and Metridium, J. exp. Biol. 37:732–752.Google Scholar
  63. Ross, D. M., 1960b, The effects of ions and drugs on neuromuscular preparations of sea anemones. II. On sphincter preparations of Calliactis and Metridium, J. exp. Biol. 37:753–773.Google Scholar
  64. Ross, D. M., and Sutton, L., 1964, Inhibition of the swimming response by food and of nematocyst discharge during swimming in the sea anemone Stomphia coccinea, J. exp. Biol. 41:751–757.PubMedGoogle Scholar
  65. Shelton, G. A. B., 1982, Anthozoa, in: Electrical Conduction and Behaviour in “Simple” Invertebrates, pp. 203–242 (G. A. B. Shelton, ed.), Clarendon Press, Oxford.Google Scholar
  66. Shelton, G. A. B., and Holley, M. C., 1984, The role of a “local electrical conduction system” during feeding in the Devonshire cup coral Caryophyllia smithii Stokes and Broderip, Proc. R. Soc. Lond. B 200:489–500.CrossRefGoogle Scholar
  67. Spencer, A. N., and Schwab, W. E., 1982, Hydrozoa, in: Electrical Conduction and Behaviour in “Simple” Invertebrates, pp. 73–148 (G. A. B. Shelton, ed.), Clarendon Press, Oxford.Google Scholar
  68. Van Marie, J., 1977, Contribution to the knowledge of the nervous system in the tentacles of some coelenterates, Bijdragen tot de Dierkunde 46:219–260.Google Scholar
  69. Watson, G. M., and Hessinger, D. A., 1989, Cnidocyte mechanoreceptors are tuned to the movements of swimming prey by chemoreceptors, Science 243:1589–1591.PubMedCrossRefGoogle Scholar
  70. Westfall, J. A., 1973, Ultrastructural evidence of a granule-containing sensory-motor interneuron in Hydra littoralis, J. Ultrastruct. Res. 42:268–282.PubMedCrossRefGoogle Scholar
  71. Wood, J. G., and Lentz, T. L., 1964, Histochemical localization of amines in Hydra and in the sea anemone, Nature 201:88–90.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • I. D. McFarlane
    • 1
  • D. Graff
    • 2
  • C. J. P. Grimmelikhuijzen
    • 2
  1. 1.Department of Applied BiologyUniversity of HullHullUK
  2. 2.Centre for Molecular NeurobiologyUniversity of HamburgHamburg 20Federal Republic of Germany

Personalised recommendations