Chemical Signaling Systems in Lower Organisms: A Prelude to the Evolution of Chemical Communication in the Nervous System

  • William E. S. Carr
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

The use of chemoreceptors to monitor chemicals appearing in the external environment has many similarities to the use of neuronal receptors to monitor chemicals appearing in a synaptic cleft. Both the chemoreceptors and neuronal receptors obtain information about specific signal molecules appearing in an aquatic milieu external to the receptor cell itself. Both receptor types include membrane-bound binding sites, whose occupancy is coupled to a transduction process which may affect the electrical properties of the membrane. Moreover, many examples are known wherein the same substance stimulates both external chemoreceptors and internal neuronal receptors (e.g., Carr et al., 1989). Earlier reviews describing analogies between external and internal receptors are provided by Kittredge et al. (1974), Lenhoff and Heagy (1977), Carr et al. (1987; 1989) and Janssens (1987).

Keywords

Adenylate Cyclase Chemical Communication Dictyostelium Discoideum Slime Mold Inositol Trisphosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berridge, M. J., 1985, The molecular basis of communication within the cell, Sci. Amer. 253:142–152.PubMedCrossRefGoogle Scholar
  2. Bonner, J. T., 1983, Chemical signals in social amoebae, Sci. Amer. 248:114–120.CrossRefGoogle Scholar
  3. Bourne, H. R., 1989, G-protein subunits: who carries what message? Nature 337:504–505.PubMedCrossRefGoogle Scholar
  4. Burkholder, A. C., and Hartwell, L. H., 1985, The yeast α-factor structural properties deduced from the sequence of the STE2 gene, Nucleic Acids Res. 13:8463–8475.PubMedCrossRefGoogle Scholar
  5. Carr, W. E. S., Ache, B. W., and Gleeson, R. A., 1987, Chemoreceptors of crustaceans: similarities to receptors for neuroactive substances in internal tissues, Environ. Health Perspect. 71:31–46.PubMedCrossRefGoogle Scholar
  6. Carr, W. E. S., Gleeson, R. A., and Trapido-Rosenthal, H. G., 1989, Chemosensory systems in lower organisms: correlations with internal receptor systems for neurotransmitters and hormones, Adv. Environ. Comp. Physiol. 5:25–52.CrossRefGoogle Scholar
  7. Carr, W. E. S., Trapido-Rosenthal, H. G., and Gleeson, R. A., 1990, The role of degradative enzymes in chemosensory processes, Chem. Senses 15:, in press.Google Scholar
  8. Chan, R. K., and Otte, C. A., 1982, Physiological characterization of Saccharomyces cerevisiae mutants supersensitive to G1 arrest by a factor and α factor pheromones, Mol. Cell. Biol. 2:21–29.PubMedGoogle Scholar
  9. Ciejek, E., and Thorner, J., 1979, Recovery of S. cerevisiae a cells from Gl arrest by α factor pheromone requires endopeptidase, Cell 18:623–635.PubMedCrossRefGoogle Scholar
  10. Cross, F., Hartwell, L. H., Jackson, C., and Konopka, J. B., 1988, Conjugation in Saccharomyces cerevisiae, Am. Rev. Cell Biol. 4:429–457.CrossRefGoogle Scholar
  11. Darmon, M., Barra, J., and Brächet, P., 1978, The role of phosphodiesterase in aggregation of Dictyostelium discoideum, J. Cell Sci. 31:233–243.PubMedGoogle Scholar
  12. Devreotes, P. N., and Zigmond, S. H., 1988. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium, Ann. Rev. Cell Biol. 4:649–686.PubMedCrossRefGoogle Scholar
  13. Dietzel, C., and Kurjan, J., 1987, The yeast SCG1 gene: a Ga-like protein implicated in the a-and α-factor response pathway, Cell 50:1001–1010.PubMedCrossRefGoogle Scholar
  14. Dolci, S., Eusebi, F., and Siracusa, G., 1985, γ-Amino butyric-n-acid sensitivity of mouse and human oocytes, Dev. Biol. 109:242–246.PubMedCrossRefGoogle Scholar
  15. Dolphin, A. C., 1987, Nucleotide binding proteins in signal transduction and disease, Trends Neurosci. 10:53–57.CrossRefGoogle Scholar
  16. Eusebi, F., Pasetto, N., and Siracusa, G., 1984, Acetylcholine receptors in human oocytes, J. Physiol.(Lond.) 346:321–330.Google Scholar
  17. Finkelstein, D. B., and Strausberg, S., 1979, Metabolism of α-factor by a mating type cells of Saccharomyces cerevisiae, J. Biol. Chem. 254:796–803.PubMedGoogle Scholar
  18. Firtel, R. A., van Haastert, P. J. M., Kimmel, A. R., and Devreotes, P. N., 1989, G protein linked signal transduction in development: Dictoystelium as an experimental system, Cell 58:235–239.PubMedCrossRefGoogle Scholar
  19. Gainer, H., Russell, J. T., and Loh, Y. P., 1985, The enzymology and intracellular organization of peptide precursor processing: the secretory vesicle hypothesis, Prog. Neuroendocrinal. 40:171–184.CrossRefGoogle Scholar
  20. Gerisch, G., 1987, Cyclic AMP and other signals controlling cell development and differentiation in Dictyostelium, Ann. Rev. Biochem. 56:853–879.PubMedCrossRefGoogle Scholar
  21. Gerisch, G., Malchow, D., and Hess, B., 1974, Cell communication and cyclic-AMP regulation during aggregation of the slime mold, Dictyostelium discoideum, in: Biochemistry of Sensory Functions, pp. 279–298 (L. Jaenicke, ed.), Springer-Verlag, New York.CrossRefGoogle Scholar
  22. Gillo, B., Lass, Y., Nadler, E., and Oron, Y., 1987, The involvement of inositol 1,4,5-trisphosphate and calcium in the two-component response to acetylcholine in Xenopus oocytes, J. Physiol. (Lond.) 392:349–361.Google Scholar
  23. Gilman, A. G., 1987, G proteins: transducers of receptor-generated signals, Ann. Rev. Biochem. 56:615–649.PubMedCrossRefGoogle Scholar
  24. Gocayne, J., Robinson, D. A., FitzGerald, M. G., Chung, F.-Z., Kerlavage, A. R., Lentes, K.-U., Lai, J., Wang, C.-D., Fraser, C. M., and Venter, J. G., 1987, Primary structure of rat cardiac β-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family, Proc. Nad. Acad. Sci. USA 84:8296–8300.CrossRefGoogle Scholar
  25. Hagen, D. C., McCaffrey, G., and Sprague, G. F., Jr., 1986, Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor gene sequence and implications for the structure of the presumed receptor, Proc. Nad. Acad. Sci. USA 83:1418–1422.CrossRefGoogle Scholar
  26. Haldane, J. B. S., 1954, La signalisation animale, Année Biol. 58:89–98.Google Scholar
  27. Hall, Z. W., 1973, Multiple forms of acetyleholinesterase and their distribution in endplate and non-endplate regions of rat diaphragm muscle, J. Neurobiol. 4:343–361.PubMedCrossRefGoogle Scholar
  28. Hall, Z. W., 1987, Three of a kind: the β-adrenergic receptor, the muscarinic acetylcholine receptor, and rhodopsin, Trends Neurosci. 10:99–101.CrossRefGoogle Scholar
  29. Herskowitz, I., and Marsh, L., 1987, Conservation of a receptor/signal transduction system, Cell 50; 995–996.PubMedCrossRefGoogle Scholar
  30. Janssens, P. M. W., 1987, Did vertebrate signal transduction mechanisms originate in eukaryotic microbes? Trends Biochem. Sci. 12:456–459.CrossRefGoogle Scholar
  31. Janssens, P. M. W., and Van Haastert, P. J. M., 1987, Molecular basis of transmembrane signal transduction in Dictyostetium discoideum, Microbiol. Rev. 51:396–418.PubMedGoogle Scholar
  32. Jelsema, C. L., and Axelrod, J., 1987, Stimulation of phospholipase A2 activity in bovine rod outer segments by the β subunits of transducin and its inhibition by the α subunit, Proc. Nad. Acad. Sci. USA 84:3623–3627.CrossRefGoogle Scholar
  33. Kay, R., 1983, Cyclic AMP and development in the slime mould, Nature 301:659.PubMedCrossRefGoogle Scholar
  34. Kim, D., Lewis, D. L., Graziadei, L., Neer, E. J., Bar-Sagi, D., and Clapham, D. E., 1989, G-protein β-subunits activate the cardiac muscarinic K+-channel via phospholipase A2, Nature 337:557–560.PubMedCrossRefGoogle Scholar
  35. Kittredge, J. S., Takahashi, F. T., Lindsey, J., and Lasker, R., 1974, Chemical signals in the sea: marine allelochemics and evolution, Fishery Bull. 72:1–11.Google Scholar
  36. Klein, P. S., Sun, T. J., Saxe, C. L. III, Kimmel, A. R., Johnson, R. L., and Devreotes, P. N., 1988, A chemoattractant receptor controls development in Dictyostetium discoideum, Science 241:1467–1472.PubMedCrossRefGoogle Scholar
  37. Kumagai, A., Pupillo, M., Gundersen, R., Miake-Lye, R., Devreotes, P. N., and Firtel, R. A., 1989, Regulation and function of Gα protein subunits in Dictyostetium, Cell 57:265–275.PubMedCrossRefGoogle Scholar
  38. Kurjan, J., and Herskowitz, I., 1982, Structure of a yeast pheromone gene (MF): a putative α-factor precursor contains four tandem copies of mature α-factor, Cell 30:933–943.PubMedCrossRefGoogle Scholar
  39. Kusano, K., Miledi, R., and Stinnakre, J., 1982, Cholinergic and calecholaminergic receptors in the Xenopus oocyte membrane, J. Physiol. (Lond.) 328:143–170.Google Scholar
  40. Lenhoff, H. M., and Heagy, W., 1977, Aquatic invertebrates: model systems for the study of receptor activation and evolution of receptor proteins, Ann. Rev. Pharmacol. Toxicol. 17:243–258.CrossRefGoogle Scholar
  41. Levitzki, A., 1986, β-Adrenergic receptors and their mode of coupling to adenylate cyclase, Physiol. Rev. 66:819–854.PubMedGoogle Scholar
  42. Levitzki, A., 1988, From epinephrine to cyclic AMP, Science 241:800–806.PubMedCrossRefGoogle Scholar
  43. Loumaye, E., Thorner, J., and Catt, K. J., 1982, Yeast mating pheromone activates mammalian gonadotrophs: evolutionary conservation of a reproductive hormone? Science 218:1323–1325.PubMedCrossRefGoogle Scholar
  44. Masu, Y., Nakayama, K., Tamaki, H., Harada, Y., Kuno, M., and Nakanishi, S., 1987, cDNA cloning of bovine substance-K receptor through oocyte expression system, Nature 329:836–838.PubMedCrossRefGoogle Scholar
  45. McRobbie, S. J., 1986, Chemotaxis and cell mobility in the cellular slime molds, CRC Crit. Rev. Microbiol. 13:335–375.CrossRefGoogle Scholar
  46. Miyajima, I., Nakafuku, M., Nakayama, N., Brenner, C., Miyajima, A., Kaibuchi, K., Arai, K,-L, Kaziro, Y., and Matsumoto, K., 1987, GPAl, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction, Cell 50:1011–1019.PubMedCrossRefGoogle Scholar
  47. Moore, S. A., 1984, Yeast cells recover from mating pheromone α factor-induced division arrest by desensitization in the absence of α factor destruction, J. Biol. Chem. 259:1004–1010.PubMedGoogle Scholar
  48. Nakamura, T., and Gold, G. H., 1987, A cyclic nucleotide-gated conductance in olfactory receptor cilia, Nature 325:442–444.PubMedCrossRefGoogle Scholar
  49. Nanjundiah, V., and Malchow, D., 1976, A theoretical study of the effects of cyclic AMP phosphodiesterases during aggregation in Dictyostetium, J. Cell Sci. 22:49–58.PubMedGoogle Scholar
  50. Neer, E. J., and Clapham, D. E., 1988, Roles of G protein subunits in transmembrane signalling, Nature 333:129–134.PubMedCrossRefGoogle Scholar
  51. Newell, P. C., Europe-Finner, G. N., and Small, N. V., 1987, Signal transduction during amoebal Chemotaxis of Dictyostetium discoideum, Microbiol. Sci. 4:5–11.PubMedGoogle Scholar
  52. Schaap, P., 1986, Regulation of size and pattern in the cellular slime molds, Differentiation 33:1–16.CrossRefGoogle Scholar
  53. Schaap, P., and Wang, M., 1986, Interactions between adenosine and oscillatory cAMP signaling regulate size and pattern in Dictyostelium, Cell 45:137–144.PubMedCrossRefGoogle Scholar
  54. Sibley, D. R., Benovic, J. L., Caron, M. G., and Lefkowitz, R. J., 1987, Regulation of transmembrane signaling by receptor phosphorylation, Cell 48:913–922.PubMedCrossRefGoogle Scholar
  55. Sprague, G. F. Jr, Blair, L. C., and Thorner, J. 1983, Cell interactions and regulation of cell type in the yeast Saccharomyces cerevisiae, Ann. Rev. Microbiol. 37:623–660.CrossRefGoogle Scholar
  56. Taussig, R., and Scheller, R. H., 1986, The Aptysia FMRFamide gene encodes sequences related to mammalian brain peptides, DNA 5:453–462.PubMedCrossRefGoogle Scholar
  57. Van Houten, J., and Preston, R. R., 1987, Chemoreception in single-celled organisms, in: Neurobiology of Taste and Smell, pp. 11–38 (T. E. Finger and W.L. Silver, eds.), John Wiley & Sons, New York.Google Scholar
  58. Venter, J. C., DiPorzio, U., Robinson, D. A., Shreeve, S. M., Lai J., Kerlavage, A. R., Fracek, S. P., Lentes, K.-U., and Fraser, C.M., 1988, Evolution of neurotransmitter receptor systems, Prog. Neurobiol. 30:105–169.PubMedCrossRefGoogle Scholar
  59. Walker, R. J., and Holden-Dye, L., 1989, Commentary on the evolution of transmitters, receptors and ion channels in invertebrates, Comp. Biochem. Physiol. 93A:25–39.CrossRefGoogle Scholar
  60. Weinberg, C. B., Sanes, J. R., and Hall, Z. W., 1981, Formation of neuromuscular junctions in adult rats: accumulation of acetylcholine receptors, acetylcholinesterase, and components of synaptic basal lamina, Dev. Biol. 84:255–266.PubMedCrossRefGoogle Scholar
  61. Whiteway, M., Hougan, L., Dignard, D., Thomas, D. Y., Bell, L., Saari, G. C., Grant, F. J., O’Hara, P., and MacKay, V.L., 1989, The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein, Cell 56:467–477.PubMedCrossRefGoogle Scholar
  62. Williams, J. G., 1988, The role of diffusible molecules in regulating the cellular differentiation of Dictyostelium discoideum, Development 103:1–16.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • William E. S. Carr
    • 1
  1. 1.Whitney Laboratory and Department of ZoologyUniversity of FloridaSt. AugustineUSA

Personalised recommendations