Advertisement

Control of Morphogenesis by Nervous System-derived Factors

  • S. A. H. Hoffmeister
  • S. Dübel
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

Intercellular communication is an essential acquisition of metazoans which allows a coordinated existence of individual cells in multicellular organisms. The invention of a nervous system during evolution made intercellular communication very rapid and effective. In addition to functioning to transmit changes in membrane potential, the role of the nervous system gains increasing interest in embryogenesis, and in regenerative processes. Hydra provides an ideal system to investigate the roots and the evolutionary development of these diverse tasks of the nervous system. Being evolutionary very old, and belonging to the first organisms to develop a nervous system, Hydra is an exciting animal for the study of the early functions of the nervous system.

Keywords

Nerve Cell Interstitial Cell Mucus Cell Head Regeneration Epithelial Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berking, S., 1974, Nachweis eines morphogenetisch aktiven Hemmstoffs in Hydra attenuata und Untersuchung seiner Eigenschaften und Wirkungen, Doctoral thesis, Ekerhard-Karls Universität, Tübingen.Google Scholar
  2. Berking, S., 1977, Bud formation in hydra: inhibition by an endogenous morphogen, Wilhelm Roux’s Arch. 181:215–225.CrossRefGoogle Scholar
  3. Berking, S., 1979, Control of nerve cell formation from multipotent stem cells in hydra, J. Cell Sci. 40:193–205.PubMedGoogle Scholar
  4. Bode, H., Berking, S., David, C. N., Gierer, A., Schaller, H., and Trenkner, E., 1973, Quantitative analysis of cell types during growth and morphogenesis in hydra, Wilhelm Rowc’s Arch. 171:269–285.CrossRefGoogle Scholar
  5. Bode, H. R., and Flick, K. M., 1976, Distribution and dynamics of nematocyte populations in Hydra attenuata J. Cell Sci.21:15–34.PubMedGoogle Scholar
  6. Bode, H. R., Flick, K. M., and Smith G. S., 1976, Regulation of interstitial cell differentiation in Hydra attenuata. I. Homeostatic control of interstitial cell population size, J. Cell Sci. 20:29–46.PubMedGoogle Scholar
  7. Bode, H. R., and David, C. N., 1978, Regulation of a multipotent stem cell, the interstitial cell of hydra, Progr. Biophys. Mol. Biol. 33:198–206.Google Scholar
  8. Bode, P. M., and Bode, H. R., 1980, Formation of patterns in regeneration tissue pieces of Hydra attenuata. I. Head-body proportion regulation, Dev. Biol. 78:484–496.PubMedCrossRefGoogle Scholar
  9. Bode, H. R., Heimfeld, S., Chow, M. A., and Huang, L. W., 1987, Gland cells arise by differentiation from interstitial cells in Hydra attenuata, Dev. Biol. 122:577–585.PubMedCrossRefGoogle Scholar
  10. Bodenmüller, H., Schilling, E., Zachmann, B., and Schaller, H. C., 1986, The neuropeptide head activator loses its biological activity by dimerisation, EMBO J. 5:1825–1829.PubMedGoogle Scholar
  11. Bosch, T., and David, C. N., 1987, Stem cells of Hydra magnipapillata can differentiate somatic cells and germ line cells, Dev. Biol. 121:182–191.CrossRefGoogle Scholar
  12. Campbell, R. D., 1967, Tissue dynamics of steady state growth in Hydra littoralis. III. Behaviour of specific cell types during tissue movements, J. Exp. Zool. 164:379–391.CrossRefGoogle Scholar
  13. David, C. N., and Campbell, R. D., 1972, Cell cycle kinetics and development of Hydra attenuata. I. Epithelial cells. J. Cell Sci. 11:557–568.PubMedGoogle Scholar
  14. David, C. N., and Gierer, A., 1974, Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation, J. Cell Sci. 16:359–375.PubMedGoogle Scholar
  15. David, C. N., and Murphy, S., 1977, Characterisation of interstitial stem cells in hydra by cloning, Dev. Biol. 58:373–383.CrossRefGoogle Scholar
  16. Dübel, S., Hoffmeister, S. A. H., and Schaller. H. C., 1987, Differentiation pathways of ectodermal epithelial cell in hydra, Differentiation 35:181–189.PubMedCrossRefGoogle Scholar
  17. Dübel, S., 1989, Differentiation in the head of hydra, Differentiation, in press.Google Scholar
  18. Gierer, A., and Meinhardt, H., 1972, A theory of biological pattern formation, Kybernetik 12:30–39.PubMedCrossRefGoogle Scholar
  19. Graf, L., and Gierer, A., 1980, Size, shape and orientation of cells in budding hydra and regulation of regeneration in cell aggregates, Wilhelm Roux’s Arch. 188:141–151.CrossRefGoogle Scholar
  20. Grimmelikhuijzen, C. J. P., 1979, Properties of the foot activator from hydra, Cell Differ. 8:267–273.CrossRefGoogle Scholar
  21. Hicklin, J., and Wolpert, L., 1973, Positional information and pattern regulation in hydra: formation of the foot end. J. Embryol. exp. Morph. 30:727–740.PubMedGoogle Scholar
  22. Hicklin, J., Hornbruch, A., Wolpert, L., and Clarke, M., 1973, Positional information and pattern regulation in hydra: the formation of boundary regions following axial grafts, J. Embryol. exp. Morph. 30:701–725.PubMedGoogle Scholar
  23. Hoffmeister, S. A. H., 1989, Action of foot activator on growth and differentiation of cells in hydra, Dev. Biol. 133:254–261.PubMedCrossRefGoogle Scholar
  24. Hoffmeister, S. A. H., and Schaller, H. C., 1985, A new biochemical marker for foot-specific cell differentiation in hydra, Wilhelm Roux’s Arch. 194:433–461.CrossRefGoogle Scholar
  25. Hoffmeister, S. A. H., and Schaller, H. C., 1987, Head activator and head inhibitor are signal for nerve cell differentiation in hydra, Dev. Biol. 122:72–77.CrossRefGoogle Scholar
  26. Holstein, T., Schaller, H. C., and David, C. N., 1986, Nerve cell differentiation in hydra requires two signals, Dev. Biol. 115:9–17.CrossRefGoogle Scholar
  27. Javois, L., Wood, R. D., and Bode, H. R., 1986, Patterning of the head in hydra as visualised by a monoclonal antibody, Dev. Biol. 117:607–618.PubMedCrossRefGoogle Scholar
  28. Kemmner, W., 1984, A model of head regeneration in hydra, Differentiation 26:83–90.CrossRefGoogle Scholar
  29. Kemmner, W., and Schalter, H. C., 1984, Actions of head activator and head inhibitor during head regeneration in hydra, Differentiation 26:91–96.CrossRefGoogle Scholar
  30. Moore, L. B., and Campbell, R. D., 1973, Bud initiation in a non-budding strain of hydra: role of interstitial cells, J. Exp. Zool. 184:397–407.PubMedCrossRefGoogle Scholar
  31. Robergc, M., Escher, E., Schaller, H. C., and Bodenmüller, H., 1984, The hydra head activator in human blood circulation. Degradation of the synthetic peptide by plasma angiotensin-converting enzyme, FEES Lett. 173:307–313.CrossRefGoogle Scholar
  32. Schaller, H. C., and Gierer, A., 1973, Distribution of the head activating substance in hydra and its localisation in membranous particles in nerve cells, J. Embryol. exp. Morph. 29:39–52.PubMedGoogle Scholar
  33. Schaller, H. C., 1976a, Action of the head activator as a growth hormone in hydra, Cell Diff. 5:1–11.CrossRefGoogle Scholar
  34. Schalter, H. C., 1976b, Action of the head activator on the determination of interstitial cells in hydra, Cell Diff. 5:13–20.CrossRefGoogle Scholar
  35. Schalter, H. C., 1976c, Head regeneration in Hydra is initiated by the release of head activator and inhibitor, Wilhelm Rowc Archiv. 180:287–295.CrossRefGoogle Scholar
  36. Schaller, H. C., Schmidt, T., Flick, K., and Grimmelikhuijzen, C. J. P., 1977, Analysis of morphogentic mutants of hydra. II. The non-budding mutant, Wilhelm Rowc’s Arch. 183:207–214.CrossRefGoogle Scholar
  37. Schaller, H. C., Schmidt, T., Flick, K., and Grimmelikhuijzen, C. J. P., 1977, Analysis of morphogenetic mutants of hydra. III Maxi and mini, Wilhelm Rowc’s Arch. 183:215–222.CrossRefGoogle Scholar
  38. Schaller, H. C., Schmidt, T., and Grimmelikhuijzen, C. J. P., 1979, Separation and specificity of action of four morphogens from hydra, Wilhelm Rowc’s Arch. 186:139–149.CrossRefGoogle Scholar
  39. Schaller, H. C., and Bodenmüller, H., 1981, Isolation and amino acid sequence of a morphogenetic peptide from hydra, Proc. Natl. Acad. Sci. USA 78:7000–7004.PubMedCrossRefGoogle Scholar
  40. Schaller, H.C., Roberge, M., Zachmann, B., Hoffmeister, S., Schilling, E., and Bodenmüller, H., 1986, The head activator is released from regenerating hydra bound to a carrier molecule, EMBO J. 5:1821–1824.PubMedGoogle Scholar
  41. Schawaller, M., Schenk, K., Hoffmeister, S. A. H., Schaller, H., and Schaller, H. C., 1988, Production and characterisation of monoclonal antibodies recognizing head activator in precursor form and immunocytochemical localisation of head activator precursor and head activator peptide in the neural cell line NH15-CA2 and in hydra, Differentiation 38:149–160.PubMedCrossRefGoogle Scholar
  42. Schmidt, T., and Schaller, H. C., 1980, Properties of the foot inhibitor from hydra, Wilhelm Rowc’s Arch. 188:133–139.CrossRefGoogle Scholar
  43. Smid, I., and Tardent, P. 1982, The influences of ecto-and endoderm in determining the axial polarity of Hydra attenuata Pall. (Cnidaria, Hydrozoa), Wilhelm Rowc’s Arch. 191:64–67.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • S. A. H. Hoffmeister
    • 1
  • S. Dübel
    • 1
  1. 1.Zentrum für Molekulare BiologieHeidelbergFederal Republic of Germany

Personalised recommendations