Skip to main content

Chemical and Electrical Synaptic Transmission in the Cnidaria

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 188))

Abstract

It was probably in an ancestral cnidarian that the earliest evolutionary experiments in neuro-neuronal and neuro-effector communication were played out. By studying present day cnidarians, we hope we are examining those synaptic mechanisms which were selected for, perhaps as far back as the Pre-Cambrian era, and which have been conserved with only minimal modification. Of course, we cannot be certain that physiological evolution proceeded at the same rate as morphological changes, nevertheless, the close resemblance of extant forms to fossilized imprints of cnidarians from this era (for example the Ediacara fauna of Australia) hint of slow rates of evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, P. A. V., 1979, Ionic basis of action potentials and bursting activity in the hydromedusan jellyfish Potyorchis penicillatus, J. exp. Biol. 78:299.

    CAS  Google Scholar 

  • Anderson, P. A. V., 1980, Epithelial conduction: its properties and functions, Prog. Newobiol. 15:161.

    Article  CAS  Google Scholar 

  • Anderson, P. A. V., 1985, Physiology of a bidirectional, excitatory chemical synapse, J. Neurophysiol. 53:821.

    PubMed  CAS  Google Scholar 

  • Anderson, P. A. V., 1988, Evidence for quantal transmitter release at a cnidarian synapse, Neurosci. Abstr. 14:1092.

    Google Scholar 

  • Anderson, P. A. V., and Grünert, U., 1988, Three-dimensional structure of bidirectional, excitatory chemical synapses in the jellyfish Cyanea capillata, Synapse 2:606.

    Article  CAS  Google Scholar 

  • Anderson, P. A. V., and Schwab, W. E., 1981, The organization and structure of nerve and muscles in the jellyfish Cyanea capillata (Coelenterata: Scyphozoa), J. Morphol. 170:383.

    Article  Google Scholar 

  • Anderson, P. A. V., and Schwab, W. E., 1983, Action potential in neurons of the motor nerve net of Cyanea (Coelenterata), J. Neurophysiol. 50:671.

    PubMed  CAS  Google Scholar 

  • Anderson, P. A. V., and Schwab, W. E., 1984, An epithelial-free preparation of the motor nerve-net of Cyanea (Coelenterata), Biol. Bull. 166:396.

    Article  Google Scholar 

  • Anderson, P. A. V., and Spencer, A. N., 1989, The importance of cnidarian synapses for neurobiology. J. Neurobiol. 20:435–457.

    Article  PubMed  CAS  Google Scholar 

  • Arkett, S. A., and Spencer, A. N., 1986a, Neuronal mechanisms of a hydromedusan shadow reflex. I. Identified reflex components and sequence of events, J. Comp. Physiol. A 159:201.

    Article  Google Scholar 

  • Arkett, S. A., and Spencer, A. N., 1986b, Neuronal mechanisms of a hydromedusan shadow reflex. II. Graded response of reflex components, possible mechanisms of photic integration, and functional significance, J. Comp. Physiol. A 159:215.

    Article  Google Scholar 

  • Augustine, G. J., Charlton, M. P., and Smith, S. J., 1987, Calcium action in synaptic transmitter release, Ann. Rev. Neurosci. 10:633.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, M. V. L., 1977, Electrical transmission: a functional analysis and comparison to chemical transmission, in: Structure and Function of Synapses (G. D. Pappas and D. P. Purpura, ed.), Raven Press, New York.

    Google Scholar 

  • Boyle, M. B., Klein, M., Smith, S. J., and Kandel, E. R., 1984, Serotonin increases intracellular Ca+ + transients in voltage clamped sensory neurons of Aptysia californica, Proc. Natl. Acad. Sci. 81:7642.

    Article  PubMed  CAS  Google Scholar 

  • Bullock, T. H., 1943, Neuromuscular facilitation in Scyphomedusae, J. Cell. Comp. Physiol. 22:251.

    Article  Google Scholar 

  • Chain, B. M., Bone, Q., and Anderson, P. A. V., 1981, Electrophysiology of a myoid epithelium in Chelophyes (Coelenterata: Siphonophora), J. Comp. Physiol. 143:329.

    Article  Google Scholar 

  • Chung, J. M., Spencer, A. N., and Gahm, K. H., 1989, Dopamine in tissues of the hydrozoan jellyfish Potyorchis penicillatus as revealed by HPLC and GC/MS, J. Comp. Physiol. B 159:173–181.

    Article  CAS  Google Scholar 

  • Dunant, Y., 1986, On the mechanisms of acetylcholine release, Prog. Neurobiol. 26:55.

    Article  PubMed  CAS  Google Scholar 

  • Fain, G. L., Ishida, A. T., and Callery, S., 1983, Mechanisms of synaptic transmission in the retina, Vis. Res. 23:1239.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, P. A., Henderson, L. P., and Nicholls, J. G., 1982, Chemical transmission between individual Retzius and sensory neurones of the leech in culture, J. Physiol. (Lond.) 323:195.

    CAS  Google Scholar 

  • Getting, P. A., 1974, Modification of neuron properties by electronic synapses. I. Input resistance, time constant, and integration, J. Neurophysiol. 37:846.

    PubMed  CAS  Google Scholar 

  • Grimmelikhuijzen, C. J. P., and Spencer, A. N., 1984, FMRFamide immunoreactivity in the nervous system of the medusa Potyorchis penicillatus, J. Comp. Neurol. 230:361.

    Article  PubMed  CAS  Google Scholar 

  • Grimmelikhuijzen, C. J. P., Graff, D., and Spencer, A. N., 1988a, Structure, location and possible actions of Arg-Phe-amide peptides in coelenterates, in: Neurohormone in Invertebrates, Soc. Exp. Biol. Sem. Ser. 33, pp. 199-217 (M. C. Thorndyke and G. J. Goldsworthy, ed.), Cambridge University Press.

    Google Scholar 

  • Grimmelikhuijzen, C. J. P., Hahn, M., Rinehart, K. L., and Spencer, A. N., 1988b, Isolation of <Glu-Leu-Leu-Gly-Gly-Arg-Phe-NH2 (Pol RFamide), a novel neuropeptide from hydromedusae. Brain Res. 475:198.

    Article  PubMed  CAS  Google Scholar 

  • Hama, K., 1959, Some observations on the fine structure of the giant nerve fibers of the earthworm Eisenia foetida, J. Biophys. Biochem. Cytol. 6:61.

    Article  PubMed  CAS  Google Scholar 

  • Hama, K., 1961, Some observations on the fine structure of the giant fibers of the crayfish (Cambarus virilus and Camabarus clarkii) with reference to the submicroscopic structure of the synapse, Anat. Rec. 141:275.

    Article  PubMed  CAS  Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Assoc., Sunderland, Mass.

    Google Scholar 

  • Hochner, B., Klein, M., Schacher, S., and Kandel, E. R., 1986, Action-potential duration and the modulation of transmitter release from the sensory neurons of Aptysia in presynaptic facilitation and behavioral sensitization, Proc. Natl. Acad, Sci. 83:8410.

    Article  CAS  Google Scholar 

  • Horridge, G. A., 1954, The nerves and muscles of medusae. I. Conduction in the nervous system of Aurellia aurita Lamarck, J. exp. Biol. 33:366.

    Google Scholar 

  • Horridge, G. A., 1968, Interneurons, W. H. Freeman, London and San Francisco.

    Google Scholar 

  • Horridge, G. A., and Mackay, B., 1962, Naked axons and symmetrical synapses in coelenterates, Quart. J. Micr. Sci. 103:531.

    Google Scholar 

  • Hubbard, J. L., Llinas, R., and Quastel, D. M. J., 1969, Electrophysiological Analysis of Synaptic Transmission, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Ciment Flow in Excitable Cells, Clarendon Press, Oxford.

    Google Scholar 

  • Jha, R. K., and Mackie, G. O., 1967, The recognition, distribution and ultrastructure of hydrozoan nerve elements, J. Morphol 123:43.

    Article  PubMed  CAS  Google Scholar 

  • Josephson, R. K., Reiss, R. F., and Worthy, R. M., 1961, A simulation study of a diffuse conducting system based on coelenterate nerve nets, J. Theor. Biol. 1:460.

    PubMed  CAS  Google Scholar 

  • Josephson, R. K., and Schwab, W. E., 1979, Electrical properties of an excitable epithelium, J. gen. Physiol 74:213.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, C. R. S., Merickel, M., and Kater, S., 1978, Centrally programmed feeding in Helisoma: Identification and characteristics of an electrically coupled pre-motor neuron network, Brain Res. 146:1.

    Article  PubMed  CAS  Google Scholar 

  • Kerfoot, P. A. H., Mackie, G. O., Meech, R. W., Roberts, A., and Singla, C. L., 1985, Neuromuscular transmission in the jellyfish Aglantha digitale, J. exp. Biol. 116:1.

    PubMed  CAS  Google Scholar 

  • Kinnamon, J. C. and Westfall, J. A., 1982, Type of neurons and synaptic connections at hypostome-tentacle junctions in Hydra, J. Morphol 173:119.

    Article  PubMed  CAS  Google Scholar 

  • Kohno, K., 1970, Symmetrical axo-axonic synapses in the axon cap of the goldfish Mauthner cell, Brain Res. 23:255.

    Article  Google Scholar 

  • Kusano, K., Livengood, D. R., and Werman, R., 1967, Tetraethylammonium ions: effect of presynaptic injection on synaptic transmission, Science 155:1257.

    Article  PubMed  CAS  Google Scholar 

  • Laughlin, S. B., 1981, Neural principles in the visual system, in: Vision in Invertebrates. Handbook of Sensory Physiology, Volume VII/6B (H. Autrum, ed.), Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Lin, J. W., and Faber, D. S., 1988, Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. II. Plasticity of excitatory postsynaptic potentials, J. Neurosci. 8:1313.

    PubMed  CAS  Google Scholar 

  • Loewenstein, W. R., 1975, Permeable junctions. Symp. quant Biol. 40:49.

    Article  Google Scholar 

  • Mackie, G. O., 1970, Neuroid conduction and the evolution of conducting tissue, Quart. Rev. Biol. 45:319.

    Article  PubMed  CAS  Google Scholar 

  • Mackie, G. O., 1978, Coordination in physonectid siphonophores, Mar. Behav. Physiol, 5:325.

    Article  Google Scholar 

  • Mackie, G. O., and Singla C. L., 1975, Neurobiology of Stomotoca. I. Action systems, J. Neurobiol. 6:339.

    Article  PubMed  CAS  Google Scholar 

  • Mackie, G. O., Anderson, P. A. V., and Singla, C. L., 1984, Apparent absence of gap junctions in two classes of Cnidaria, Biol. Bull. 167:120.

    Article  Google Scholar 

  • MacVicar, B., and Dudek, F. E., 1981, Electronic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices, Science 213:782.

    Article  PubMed  CAS  Google Scholar 

  • Martin, A. R., and Pilar, R., 1964, Quantal components of the synaptic potential in the ciliary ganglion of the chick, J. Physiol. (Lond.) 175:1.

    CAS  Google Scholar 

  • Mayer, A. G., 1906, Rhythmical pulsation in scyphomedusae, Carnegie Inst. Wash. Publ., 47:1.

    Google Scholar 

  • McCarragher, G., and Chase, R., 1983, Morphological evidence for bidirectional chemical synapses, Neurosci. Abst. 9:1025.

    Google Scholar 

  • Pantin, C. F. A., 1935, The nerve-net of the Actinozoa. IV. Facilitation, J. exp. Biol. 12:119.

    Google Scholar 

  • Passano, L. M., 1965, Pacemakers and activity patterns in medusae: homage to Romanes, Am. Zool. 5:465.

    PubMed  CAS  Google Scholar 

  • Peteya, D. J., 1973, A light and electron microscope study of the nervous system of Ceriantheopsis americanus (Cnidaria, Ceriantharia), Z. Zellforsh. Mikroskop. Anat. 141:301.

    Article  CAS  Google Scholar 

  • Przysiezniak, J. and Spencer, A. N., 1989, Primary culture of identified neurones from a cnidarian, J. exp. Biol. 142:97.

    Google Scholar 

  • Roberts, A., and Mackie, G. O., 1980, The giant axon escape system of a hydrozoan medusa, Aglantha digitate, J. exp. Biol. 84:303.

    PubMed  CAS  Google Scholar 

  • Satterlie, R. A., 1985, Central generation of swimming activity in the hydrozoan jellyfish Aequorea aequorea, J. Neurobiol. 16:41.

    Article  PubMed  CAS  Google Scholar 

  • Satterlie, R. A., and Spencer, A. N., 1979, Swimming control in a cubomedusan jellyfish, Nature 281:141.

    Article  Google Scholar 

  • Schwab, W. E. and Anderson, P. A. V., 1980, Intracellular recordings of spontaneous and evoked electrical events in the motorneurons of the jellyfish Cyanea capillata, Am. Zool. 20:941.

    Google Scholar 

  • Spencer, A. N., 1974, Non-nervous conduction in invertebrates and embryos, Amer. Zool. 14:917.

    Google Scholar 

  • Spencer, A. N., 1979, Neurobiology of Polyorchis. II. Structure of effector systems, J. Neurobiol. 10:95.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, A. N., 1981, The parameters and properties of a group of electrically coupled neurones in the central nervous system of a hydrozoan jellyfish, J. exp. Biol. 93:33.

    Google Scholar 

  • Spencer, A. N., 1982, The physiology of a coelenterate neuromuscular synapse, J. Comp. Physiol. 148:353.

    Article  Google Scholar 

  • Spencer, A. N., 1988, Effects of Arg-Phe-amide peptides on identified motor neurons in the hydromedusa Potyorchis penicillatus, Can. J. Zool. 66:639.

    Article  CAS  Google Scholar 

  • Spencer, A. N., and Arkett, S. A., 1984, Radial symmetry and the organization of central neurones in a hydrozoan jellyfish, J. exp. Biol. 110:69.

    Google Scholar 

  • Spencer, A.N., Przysiezniak, J., Acosta-Urquida, J. and Basarsky, TA., 1989, Presynaptic spike broadening reduces junctional potential amplitude, Nature 340:636–638.

    Article  PubMed  CAS  Google Scholar 

  • Tauc, L., 1982, Non-vesicular release of neurotransmitter, Phys. Rev. 62:857.

    CAS  Google Scholar 

  • Takeuchi, A., and Takeuchi, N., 1970, Electrical changes in pre-and postsynaptic axons of the giant synapse of Loligo, J. gen. Physiol. 45:1181.

    Article  Google Scholar 

  • Westfall, J. A., 1970, Synapses in a sea-anemone, Metridium (Anthozoa), Electron Microsc. Proc. Int. Congr. 7th, Société Française de Microscopie Electronique, Paris 3:717.

    Google Scholar 

  • Westfall, J. A., 1987, Ultrastructure of invertebrate synapses, in: Nervous Systems in Invertebrates (M. A. Ali, ed.), Plenum Press, New York and London.

    Google Scholar 

  • Westfall, J. A., Yamataka, S., and Enos, P. D., 1970, Ultrastructure of synapses in Hydra, J. Cell Biol. 47:226.

    Google Scholar 

  • Westfall, J. A., Yamataka, S., and Enos, P. D., 1971, Ultrastructural evidence of polarized synapses in the nerve-net of Hydra, J. Cell Biol. 51:318.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., 1957, Das aktionspotential der Sinneskörper (Randkörper) der Meduse Aurelia aurita, Z. Biol. 109:116.

    PubMed  CAS  Google Scholar 

  • Zucker, R. S., and Lando, L., 1986, Mechanism of transmitter release: voltage hypothesis and calcium hypothesis, Science 231:574.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spencer, A.N. (1989). Chemical and Electrical Synaptic Transmission in the Cnidaria. In: Anderson, P.A.V. (eds) Evolution of the First Nervous Systems. NATO ASI Series, vol 188. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0921-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0921-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0923-7

  • Online ISBN: 978-1-4899-0921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics