Advertisement

Chemical and Electrical Synaptic Transmission in the Cnidaria

  • Andrew N. Spencer
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

It was probably in an ancestral cnidarian that the earliest evolutionary experiments in neuro-neuronal and neuro-effector communication were played out. By studying present day cnidarians, we hope we are examining those synaptic mechanisms which were selected for, perhaps as far back as the Pre-Cambrian era, and which have been conserved with only minimal modification. Of course, we cannot be certain that physiological evolution proceeded at the same rate as morphological changes, nevertheless, the close resemblance of extant forms to fossilized imprints of cnidarians from this era (for example the Ediacara fauna of Australia) hint of slow rates of evolution.

Keywords

Transmitter Release Nerve Ring Chemical Synapse Postsynaptic Cell Synaptic Delay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderson, P. A. V., 1979, Ionic basis of action potentials and bursting activity in the hydromedusan jellyfish Potyorchis penicillatus, J. exp. Biol. 78:299.Google Scholar
  2. Anderson, P. A. V., 1980, Epithelial conduction: its properties and functions, Prog. Newobiol. 15:161.CrossRefGoogle Scholar
  3. Anderson, P. A. V., 1985, Physiology of a bidirectional, excitatory chemical synapse, J. Neurophysiol. 53:821.PubMedGoogle Scholar
  4. Anderson, P. A. V., 1988, Evidence for quantal transmitter release at a cnidarian synapse, Neurosci. Abstr. 14:1092.Google Scholar
  5. Anderson, P. A. V., and Grünert, U., 1988, Three-dimensional structure of bidirectional, excitatory chemical synapses in the jellyfish Cyanea capillata, Synapse 2:606.CrossRefGoogle Scholar
  6. Anderson, P. A. V., and Schwab, W. E., 1981, The organization and structure of nerve and muscles in the jellyfish Cyanea capillata (Coelenterata: Scyphozoa), J. Morphol. 170:383.CrossRefGoogle Scholar
  7. Anderson, P. A. V., and Schwab, W. E., 1983, Action potential in neurons of the motor nerve net of Cyanea (Coelenterata), J. Neurophysiol. 50:671.PubMedGoogle Scholar
  8. Anderson, P. A. V., and Schwab, W. E., 1984, An epithelial-free preparation of the motor nerve-net of Cyanea (Coelenterata), Biol. Bull. 166:396.CrossRefGoogle Scholar
  9. Anderson, P. A. V., and Spencer, A. N., 1989, The importance of cnidarian synapses for neurobiology. J. Neurobiol. 20:435–457.PubMedCrossRefGoogle Scholar
  10. Arkett, S. A., and Spencer, A. N., 1986a, Neuronal mechanisms of a hydromedusan shadow reflex. I. Identified reflex components and sequence of events, J. Comp. Physiol. A 159:201.CrossRefGoogle Scholar
  11. Arkett, S. A., and Spencer, A. N., 1986b, Neuronal mechanisms of a hydromedusan shadow reflex. II. Graded response of reflex components, possible mechanisms of photic integration, and functional significance, J. Comp. Physiol. A 159:215.CrossRefGoogle Scholar
  12. Augustine, G. J., Charlton, M. P., and Smith, S. J., 1987, Calcium action in synaptic transmitter release, Ann. Rev. Neurosci. 10:633.PubMedCrossRefGoogle Scholar
  13. Bennett, M. V. L., 1977, Electrical transmission: a functional analysis and comparison to chemical transmission, in: Structure and Function of Synapses (G. D. Pappas and D. P. Purpura, ed.), Raven Press, New York.Google Scholar
  14. Boyle, M. B., Klein, M., Smith, S. J., and Kandel, E. R., 1984, Serotonin increases intracellular Ca+ + transients in voltage clamped sensory neurons of Aptysia californica, Proc. Natl. Acad. Sci. 81:7642.PubMedCrossRefGoogle Scholar
  15. Bullock, T. H., 1943, Neuromuscular facilitation in Scyphomedusae, J. Cell. Comp. Physiol. 22:251.CrossRefGoogle Scholar
  16. Chain, B. M., Bone, Q., and Anderson, P. A. V., 1981, Electrophysiology of a myoid epithelium in Chelophyes (Coelenterata: Siphonophora), J. Comp. Physiol. 143:329.CrossRefGoogle Scholar
  17. Chung, J. M., Spencer, A. N., and Gahm, K. H., 1989, Dopamine in tissues of the hydrozoan jellyfish Potyorchis penicillatus as revealed by HPLC and GC/MS, J. Comp. Physiol. B 159:173–181.CrossRefGoogle Scholar
  18. Dunant, Y., 1986, On the mechanisms of acetylcholine release, Prog. Neurobiol. 26:55.PubMedCrossRefGoogle Scholar
  19. Fain, G. L., Ishida, A. T., and Callery, S., 1983, Mechanisms of synaptic transmission in the retina, Vis. Res. 23:1239.PubMedCrossRefGoogle Scholar
  20. Fuchs, P. A., Henderson, L. P., and Nicholls, J. G., 1982, Chemical transmission between individual Retzius and sensory neurones of the leech in culture, J. Physiol. (Lond.) 323:195.Google Scholar
  21. Getting, P. A., 1974, Modification of neuron properties by electronic synapses. I. Input resistance, time constant, and integration, J. Neurophysiol. 37:846.PubMedGoogle Scholar
  22. Grimmelikhuijzen, C. J. P., and Spencer, A. N., 1984, FMRFamide immunoreactivity in the nervous system of the medusa Potyorchis penicillatus, J. Comp. Neurol. 230:361.PubMedCrossRefGoogle Scholar
  23. Grimmelikhuijzen, C. J. P., Graff, D., and Spencer, A. N., 1988a, Structure, location and possible actions of Arg-Phe-amide peptides in coelenterates, in: Neurohormone in Invertebrates, Soc. Exp. Biol. Sem. Ser. 33, pp. 199-217 (M. C. Thorndyke and G. J. Goldsworthy, ed.), Cambridge University Press.Google Scholar
  24. Grimmelikhuijzen, C. J. P., Hahn, M., Rinehart, K. L., and Spencer, A. N., 1988b, Isolation of <Glu-Leu-Leu-Gly-Gly-Arg-Phe-NH2 (Pol RFamide), a novel neuropeptide from hydromedusae. Brain Res. 475:198.PubMedCrossRefGoogle Scholar
  25. Hama, K., 1959, Some observations on the fine structure of the giant nerve fibers of the earthworm Eisenia foetida, J. Biophys. Biochem. Cytol. 6:61.PubMedCrossRefGoogle Scholar
  26. Hama, K., 1961, Some observations on the fine structure of the giant fibers of the crayfish (Cambarus virilus and Camabarus clarkii) with reference to the submicroscopic structure of the synapse, Anat. Rec. 141:275.PubMedCrossRefGoogle Scholar
  27. Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Assoc., Sunderland, Mass.Google Scholar
  28. Hochner, B., Klein, M., Schacher, S., and Kandel, E. R., 1986, Action-potential duration and the modulation of transmitter release from the sensory neurons of Aptysia in presynaptic facilitation and behavioral sensitization, Proc. Natl. Acad, Sci. 83:8410.CrossRefGoogle Scholar
  29. Horridge, G. A., 1954, The nerves and muscles of medusae. I. Conduction in the nervous system of Aurellia aurita Lamarck, J. exp. Biol. 33:366.Google Scholar
  30. Horridge, G. A., 1968, Interneurons, W. H. Freeman, London and San Francisco.Google Scholar
  31. Horridge, G. A., and Mackay, B., 1962, Naked axons and symmetrical synapses in coelenterates, Quart. J. Micr. Sci. 103:531.Google Scholar
  32. Hubbard, J. L., Llinas, R., and Quastel, D. M. J., 1969, Electrophysiological Analysis of Synaptic Transmission, Williams and Wilkins, Baltimore.Google Scholar
  33. Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electric Ciment Flow in Excitable Cells, Clarendon Press, Oxford.Google Scholar
  34. Jha, R. K., and Mackie, G. O., 1967, The recognition, distribution and ultrastructure of hydrozoan nerve elements, J. Morphol 123:43.PubMedCrossRefGoogle Scholar
  35. Josephson, R. K., Reiss, R. F., and Worthy, R. M., 1961, A simulation study of a diffuse conducting system based on coelenterate nerve nets, J. Theor. Biol. 1:460.PubMedGoogle Scholar
  36. Josephson, R. K., and Schwab, W. E., 1979, Electrical properties of an excitable epithelium, J. gen. Physiol 74:213.PubMedCrossRefGoogle Scholar
  37. Kaneko, C. R. S., Merickel, M., and Kater, S., 1978, Centrally programmed feeding in Helisoma: Identification and characteristics of an electrically coupled pre-motor neuron network, Brain Res. 146:1.PubMedCrossRefGoogle Scholar
  38. Kerfoot, P. A. H., Mackie, G. O., Meech, R. W., Roberts, A., and Singla, C. L., 1985, Neuromuscular transmission in the jellyfish Aglantha digitale, J. exp. Biol. 116:1.PubMedGoogle Scholar
  39. Kinnamon, J. C. and Westfall, J. A., 1982, Type of neurons and synaptic connections at hypostome-tentacle junctions in Hydra, J. Morphol 173:119.PubMedCrossRefGoogle Scholar
  40. Kohno, K., 1970, Symmetrical axo-axonic synapses in the axon cap of the goldfish Mauthner cell, Brain Res. 23:255.CrossRefGoogle Scholar
  41. Kusano, K., Livengood, D. R., and Werman, R., 1967, Tetraethylammonium ions: effect of presynaptic injection on synaptic transmission, Science 155:1257.PubMedCrossRefGoogle Scholar
  42. Laughlin, S. B., 1981, Neural principles in the visual system, in: Vision in Invertebrates. Handbook of Sensory Physiology, Volume VII/6B (H. Autrum, ed.), Springer, Berlin, Heidelberg, New York.Google Scholar
  43. Lin, J. W., and Faber, D. S., 1988, Synaptic transmission mediated by single club endings on the goldfish Mauthner cell. II. Plasticity of excitatory postsynaptic potentials, J. Neurosci. 8:1313.PubMedGoogle Scholar
  44. Loewenstein, W. R., 1975, Permeable junctions. Symp. quant Biol. 40:49.CrossRefGoogle Scholar
  45. Mackie, G. O., 1970, Neuroid conduction and the evolution of conducting tissue, Quart. Rev. Biol. 45:319.PubMedCrossRefGoogle Scholar
  46. Mackie, G. O., 1978, Coordination in physonectid siphonophores, Mar. Behav. Physiol, 5:325.CrossRefGoogle Scholar
  47. Mackie, G. O., and Singla C. L., 1975, Neurobiology of Stomotoca. I. Action systems, J. Neurobiol. 6:339.PubMedCrossRefGoogle Scholar
  48. Mackie, G. O., Anderson, P. A. V., and Singla, C. L., 1984, Apparent absence of gap junctions in two classes of Cnidaria, Biol. Bull. 167:120.CrossRefGoogle Scholar
  49. MacVicar, B., and Dudek, F. E., 1981, Electronic coupling between pyramidal cells: a direct demonstration in rat hippocampal slices, Science 213:782.PubMedCrossRefGoogle Scholar
  50. Martin, A. R., and Pilar, R., 1964, Quantal components of the synaptic potential in the ciliary ganglion of the chick, J. Physiol. (Lond.) 175:1.Google Scholar
  51. Mayer, A. G., 1906, Rhythmical pulsation in scyphomedusae, Carnegie Inst. Wash. Publ., 47:1.Google Scholar
  52. McCarragher, G., and Chase, R., 1983, Morphological evidence for bidirectional chemical synapses, Neurosci. Abst. 9:1025.Google Scholar
  53. Pantin, C. F. A., 1935, The nerve-net of the Actinozoa. IV. Facilitation, J. exp. Biol. 12:119.Google Scholar
  54. Passano, L. M., 1965, Pacemakers and activity patterns in medusae: homage to Romanes, Am. Zool. 5:465.PubMedGoogle Scholar
  55. Peteya, D. J., 1973, A light and electron microscope study of the nervous system of Ceriantheopsis americanus (Cnidaria, Ceriantharia), Z. Zellforsh. Mikroskop. Anat. 141:301.CrossRefGoogle Scholar
  56. Przysiezniak, J. and Spencer, A. N., 1989, Primary culture of identified neurones from a cnidarian, J. exp. Biol. 142:97.Google Scholar
  57. Roberts, A., and Mackie, G. O., 1980, The giant axon escape system of a hydrozoan medusa, Aglantha digitate, J. exp. Biol. 84:303.PubMedGoogle Scholar
  58. Satterlie, R. A., 1985, Central generation of swimming activity in the hydrozoan jellyfish Aequorea aequorea, J. Neurobiol. 16:41.PubMedCrossRefGoogle Scholar
  59. Satterlie, R. A., and Spencer, A. N., 1979, Swimming control in a cubomedusan jellyfish, Nature 281:141.CrossRefGoogle Scholar
  60. Schwab, W. E. and Anderson, P. A. V., 1980, Intracellular recordings of spontaneous and evoked electrical events in the motorneurons of the jellyfish Cyanea capillata, Am. Zool. 20:941.Google Scholar
  61. Spencer, A. N., 1974, Non-nervous conduction in invertebrates and embryos, Amer. Zool. 14:917.Google Scholar
  62. Spencer, A. N., 1979, Neurobiology of Polyorchis. II. Structure of effector systems, J. Neurobiol. 10:95.PubMedCrossRefGoogle Scholar
  63. Spencer, A. N., 1981, The parameters and properties of a group of electrically coupled neurones in the central nervous system of a hydrozoan jellyfish, J. exp. Biol. 93:33.Google Scholar
  64. Spencer, A. N., 1982, The physiology of a coelenterate neuromuscular synapse, J. Comp. Physiol. 148:353.CrossRefGoogle Scholar
  65. Spencer, A. N., 1988, Effects of Arg-Phe-amide peptides on identified motor neurons in the hydromedusa Potyorchis penicillatus, Can. J. Zool. 66:639.CrossRefGoogle Scholar
  66. Spencer, A. N., and Arkett, S. A., 1984, Radial symmetry and the organization of central neurones in a hydrozoan jellyfish, J. exp. Biol. 110:69.Google Scholar
  67. Spencer, A.N., Przysiezniak, J., Acosta-Urquida, J. and Basarsky, TA., 1989, Presynaptic spike broadening reduces junctional potential amplitude, Nature 340:636–638.PubMedCrossRefGoogle Scholar
  68. Tauc, L., 1982, Non-vesicular release of neurotransmitter, Phys. Rev. 62:857.Google Scholar
  69. Takeuchi, A., and Takeuchi, N., 1970, Electrical changes in pre-and postsynaptic axons of the giant synapse of Loligo, J. gen. Physiol. 45:1181.CrossRefGoogle Scholar
  70. Westfall, J. A., 1970, Synapses in a sea-anemone, Metridium (Anthozoa), Electron Microsc. Proc. Int. Congr. 7th, Société Française de Microscopie Electronique, Paris 3:717.Google Scholar
  71. Westfall, J. A., 1987, Ultrastructure of invertebrate synapses, in: Nervous Systems in Invertebrates (M. A. Ali, ed.), Plenum Press, New York and London.Google Scholar
  72. Westfall, J. A., Yamataka, S., and Enos, P. D., 1970, Ultrastructure of synapses in Hydra, J. Cell Biol. 47:226.Google Scholar
  73. Westfall, J. A., Yamataka, S., and Enos, P. D., 1971, Ultrastructural evidence of polarized synapses in the nerve-net of Hydra, J. Cell Biol. 51:318.PubMedCrossRefGoogle Scholar
  74. Yamashita, T., 1957, Das aktionspotential der Sinneskörper (Randkörper) der Meduse Aurelia aurita, Z. Biol. 109:116.PubMedGoogle Scholar
  75. Zucker, R. S., and Lando, L., 1986, Mechanism of transmitter release: voltage hypothesis and calcium hypothesis, Science 231:574.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Andrew N. Spencer
    • 1
  1. 1.Department of ZoologyUniversity of AlbertaEdmontonCanada

Personalised recommendations