Hydromedusan Photophysiology: An Evolutionary Perspective

  • Stuart A. Arkett
Part of the NATO ASI Series book series (NSSA, volume 188)


Although there has been a long standing debate on the number of phyletic Unes of photoreceptor structure evolution (Eakin, 1982; Salvini-Plawen, 1982; Vanfleteren, 1982), there seems to be a growing consensus that photoreceptor organelles may have arisen anew several times from photosensitive ciliated ectodermal cells (Salvini-Plawen and Mayr, 1977; Burr 1984). Modifications to a simple photosensitive cell leading to a more complex “eye” appear to be a “...polyphyletic reaction to respective selective pressures...” (Salvini-Plawen, 1982). This process has led to an extraordinarily diverse array of photoreceptor types. To generate this diversity of photoreceptors, modifications were presumably functionally adaptive to a particular group of animals. This basic premise implies that there is a positive correlation between the degree of structural complexity and photoreceptor function (Salvini-Plawen and Mayr, 1977), revealed either by its photophysiology or by the behavior of the animal. Yet, for many groups of simple invertebrates, and particularly cnidarians, there has been insufficient information to begin to examine this correlation.


Lamellar Body Diel Vertical Migration Nerve Ring Lucifer Yellow Ciliary Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. A. V., and Mackie, G. O., 1977, Electrically coupled, photosensitive neurons control swimming in a jellyfish, Science 197:186–188.PubMedCrossRefGoogle Scholar
  2. Anderson, R. E., and Andrews, L. D., 1982, Biochemistry of retinal photoreceptor membranes in vertebrates and invertebrates, in: Visual Cells in Evolution (J. A. Westfall, ed.), pp. 1–22, Raven Press, New York.Google Scholar
  3. Arai, M. N., and Fulton, J., 1973, Diel migration and breeding cycle of Aglantha digitale from two locations in the N. E. Pacific, J. Fish. Res. Bd. Can. 30:551–553.CrossRefGoogle Scholar
  4. Arikawa, K., Eguchi, E., Yoshida, A., and Aoki, K., 1980, Multiple extraocular photoreceptive areas on genitalia of butterfly, Papilio xuthus, Nature 288:700–702.CrossRefGoogle Scholar
  5. Arkett, S. A., 1984, Diel vertical migration and feeding behavior of a demersal hydromedusan (Potyorcnis penicillatus), Can. J. Fish. Aquat. Sci. 41:1837–1843.CrossRefGoogle Scholar
  6. Arkett, S. A., 1985, The shadow response of a hydromedusan (Potyorcnis penicillatus): behavioral mechanisms controlling diel and ontogenic vertical migration, Biol. Bull. 169:297–312.CrossRefGoogle Scholar
  7. Arkett, S. A., and Spencer, A. N., 1986a, Neuronal mechanisms of a hydromedusan shadow reflex. I. Identified reflex components and sequence of events, J. Comp. Physiol. 159:201–213.CrossRefGoogle Scholar
  8. Arkett, S. A., and Spencer, A. N., 1986b, Neuronal mechanisms of a hydromedusan shadow reflex. II. Graded response of reflex components, possible mechanisms of photic integration, and functional significance, J. Comp. Physiol. 159:215–225.CrossRefGoogle Scholar
  9. Aronova, M. Z., 1979, Electron microscopic investigation of the presumptive photoreceptive cells in the aboral organ of the ctenophore Beroe cucumis, Zhurnal Evotyutsionnoi Biokhimii i Fiziologii 15:59–601 (in Russian).Google Scholar
  10. Benovic, A., 1973, Diurnal vertical migration of Solmissus albescens in the southern Adriatic, Mar. Biol. 18:298–30.Google Scholar
  11. Besharse, J. C., and Pfenninger, K. H., 1980, Membrane assembly in retinal photoreceptors. 1. Freeze-fracture analysis of cytoplasmic vesicles in relationship to disc assembly, J. Cell Biol. 87:451–463.PubMedCrossRefGoogle Scholar
  12. Bouillon, J., and Nielsen, M., 1974, Étude de quelques organes sensoriels de cnidaires, Arch. Biol. 85:307–328.Google Scholar
  13. Burr, A. H., 1984, Evolution of eyes and photoreceptor organelles in the lower phyla, in: Photoreception and Vision in Invertebrates (M. A. Ali, ed.), pp. 131–178, Plenum Press, New York.CrossRefGoogle Scholar
  14. Daw, N. W., Brunken, W.J., and Parkinson, D., 1989, The function of the synaptic transmitters in the retina, Ann. Rev. Neurosci. 12:205–225.PubMedCrossRefGoogle Scholar
  15. Eakin, R. M., 1982, Continuity and diversity in photoreceptors, In:Visual Cells in Evolution (J. A. Westfall, ed.) pp 91–105, Raven Press, New York.Google Scholar
  16. Eakin, R. M., and Westfall, J. A., 1962, Fine structure of photoreceptors in the hydromedusan, Potyorcnis penicillatus, Proc. Natl. Acad. Sci. U.S. 48:826–833.CrossRefGoogle Scholar
  17. Fain, G. L., Gold, G. H., and Dowling, J. E., 1976, Receptor coupling in the toad retina, Cold Spring Harbor Symp. Quant. Biol. 40:547–561.PubMedCrossRefGoogle Scholar
  18. Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R., and Raff, R. A., 1988, Molecular phytogeny of the animal kingdom, Science 239:748–753.PubMedCrossRefGoogle Scholar
  19. Glaessner, M. F., 1962. Pre-Cambrian Fossils, Biol. Rev. 37:467–494.Google Scholar
  20. Goldsmith, T. H., and Bernard, G. D., 1985, Visual pigments of invertebrates, Photochemistry and Photobiology 42:805–809.CrossRefGoogle Scholar
  21. Grimmelikhuijzen, C. J. P., and Spencer, A. N., 1984, FMRF-amide immunoreactivity in the nervous system of the medusa Polyorchis penicillatus, J. Comp. Neurol. 230:361–371.PubMedCrossRefGoogle Scholar
  22. Hamner, W. M., 1985, The importance of ethology for investigations of marine Zooplankton, Bull. Mar. Sci. 40:414–424.Google Scholar
  23. Henkart, M., 1975, Light-induced changes in the structure of pigmented granules in Aplysia neurons, Science 188:155–157.PubMedCrossRefGoogle Scholar
  24. Hesthagen, I. H., 1971, On the biology of the bottom-dwelling trachymedusae Tesserogastria musculosa, Norwegian J. Zoology 19:1–19.Google Scholar
  25. Hisada, M., 1956, A study on the photoreceptor of a medusa, Spirocodon saltatrix, J. Fac. Sci. Hokkaido Univ. Ser. VI, Zool. 12:529–533.Google Scholar
  26. Honegger, T., Achermann, J., Stidwell, R., Littlefield, L., Baenninger, R., and Tardent, P., 1980, Light-controlled spawning in PhiaUdium hemisphaericum (Leptomedusae), in: Development and Cellular Biology of Coelenterates (P. Tardent and R. Tardent, eds.), pp. 83–88, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  27. Horridge, G. A., 1964, Presumed photoreceptive cilia in a ctenophore, Quarterly Journal Microsc. Sci. 105:311–317.Google Scholar
  28. Ikegami, S., 1977, The occurrence and some properties of a spawning inducing substance in the testis of the hydromedusan Spirocodon saltatrix, Agric. Biol. Chem. 41:2311–2312.CrossRefGoogle Scholar
  29. Ikegami, S., Honji, N., and Yoshida, M., 1978, Light-controlled production of spawning-inducing substance in jellyfish ovary, Nature 272:611–612.CrossRefGoogle Scholar
  30. Jan, L. Y., and Revel, J. P., 1974, Ultrastructural localization of rhodopsin in the vertebrate retina, J. Cell Biol. 62:257–273.PubMedCrossRefGoogle Scholar
  31. Jarvilehto, M., 1979, Receptor potentials in invertebrate visual cells, in: Handbook of Sensory Physiology, Volume VII/6A, Comparative Physiology and Evolution of Vision in Invertebrates, A: Invertebrate Photoreceptors (H. Autrum, ed.), pp. 315–356, Springer-Verlag, Berlin.Google Scholar
  32. Kikuchi, K., 1947, On the shadow reflex of Spirocodon saltatrix and their vertical distribution in the sea, Zool. Mag. 57:144–146 (in Japanese).Google Scholar
  33. Lam, D. M-K., Frederick, J. M., Hollyfield, J. G., Sarthy, P. V., and Marc, R. W., 1982, Identification of neurotransmitter candidates in invertebrate and vertebrate photoreceptors, in: Visual Cells in Evolution (J. A. Westfall, ed.), pp. 65–80, Raven Press, New York.Google Scholar
  34. Mackie, G. O., 1970, Neuroid conduction and the evolution of conducting tissues, Quart. Rev. Biol. 45:319–332.PubMedCrossRefGoogle Scholar
  35. Mackie, G. O., 1975, Neurobiology of Stomotoca. II. Pacemaker and conduction pathways, J. Neurobiol. 6:339–378.PubMedCrossRefGoogle Scholar
  36. Mackie, G. O., 1985, Midwater macroplankton of British Columbia studied by submersible PISCES IV, J. Plankton Res. 7:753–777.CrossRefGoogle Scholar
  37. Mackie, G. O., and Mills, C. E., 1983, Use of the PISCES IV submersible for Zooplankton studies in coastal waters of British Columbia, Can. J. Fish. Aquat. Sci. 40:763–776.CrossRefGoogle Scholar
  38. Mackie. G. O., and Passano, L. M., 1968, Epithelial conduction in hydromedusae, J. Gen. Physiol. 52:600–621.CrossRefGoogle Scholar
  39. McReynolds, J. S., 1976, Hyperpolarizaing photoreceptors in invertebrates, in: Neural Principles in Vision (F. Zettler and R. Weiler, eds.), pp. 394–409, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  40. Miller, R. L., 1980, Species-specificity of sperm Chemotaxis in the hydromedusae, in: Developmental and Cellular Biology of Coelenterates (P. Tardent and R. Tardent, eds.), pp. 89–94, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  41. Mills, C. E., 1981, Diversity of swimming behaviors in hydromedusae as related to feeding and utilization of space, Mar. Biol. 64:185–189.CrossRefGoogle Scholar
  42. Mills, C. E., 1982, Patterns and mechanisms of vertical distribution of medusae and ctenophores, Ph.D. dissertation, 384 pp., University of Victoria, Victoria, B.C.Google Scholar
  43. Mills, C. E., 1983, Vertical migration and diel activity patterns of hydromedusae:studies in a large tank, J. Plankton Res. 5:619–635.CrossRefGoogle Scholar
  44. Mills, C. E., and Goy, J., 1988, In situ observations of the behavior of mesopelagic Solmissus narcomedusae (Cnidaria, Hydrozoa), Bull. Mar. Sci. 43:739–751.Google Scholar
  45. Moreira, G. S., 1973. On the diurnal migration of hydromedusae off Santo, Brazil, Pub. Seto Mar. Bio. Lab. 20:537–566.Google Scholar
  46. Murbach, L., 1909, Some light reactions of the medusa Gonionemus, Biol. Bull. 17:354–368.CrossRefGoogle Scholar
  47. Nagao, Z., 1963, The early development of the anthomedusa, Pofyorchis karafutoensis Kishinouye, Annot. Zool. Jpn. 36:187–193.Google Scholar
  48. Ohtsu, K., 1983a, UV-visible antagonism in extraocular photosensitive neurons of the anthomedusa Spirocodon saltatrix (Tilesius), J. Neurobiol. 14:145–155.PubMedCrossRefGoogle Scholar
  49. Ohtsu, K., 1983b, Antagonizing effect of ultraviolet and visible light on the ERG from the ocellus of Spirocodon saltatrix (Coelenterata: Hydrozoa), J. exp. Biol. 105:417–420.Google Scholar
  50. Ohtsu, K., and Yoshida, M., 1973, Electrical activities of the anthomeudsan, Spirocodon saltatrix (Tilesius), Biol. Bull. 145:532–547.CrossRefGoogle Scholar
  51. Omori, M., and Hamner, W. M., 1982, Patchy distribution of Zooplankton: behavior, population assessment, and sampling problems, Mar. Biol. 72:193–200.CrossRefGoogle Scholar
  52. Passano, L. M., 1973, Behavioral control systems in medusae: a comparison between hydro-and scyphomedusae, Pub. Seto Mar. Bio. Lab. 20:615–645.Google Scholar
  53. Pearre, S., 1979, Problems of detection and interpretation of vertical migration, J. Plankton Res. 1:29–44.CrossRefGoogle Scholar
  54. Roosen-Runge, E. C., 1962, On the biology of sexual reproduction of hydromedusae, Genus Phialidium Leuckhart, Pacific Science 16:15–24.Google Scholar
  55. Romanes, G.J., 1885, Jellyfish, starfish, and sea urchins, 323 pp., D. Appleton & Co., New York.Google Scholar
  56. Rugh, R., 1929, Egg laying habits of Gonionemus murbachii in relation to light, Biol. Bull. 57:261–266.CrossRefGoogle Scholar
  57. Russell, F. S., 1925, The vertical distribution of marine macroplankton. An observation on diurnal changes, J. Mar. Biol. Assoc. UK 13:769–809.CrossRefGoogle Scholar
  58. Salvini-Plawen, L. v., 1982, On the polyphyletic origin of photoreceptors, in: Visual Cells in Evolution (J. A. Westfall, ed.), pp. 137–154, Raven Press, New York.Google Scholar
  59. Salvini-Plawen, L. v., and Mayr, E., 1977, On the evolution of photoreceptors and eyes, in: Evoutionary Biology, Volume 10 (M.K. Hecht, W.C. Steere, and B. Wallace, eds.), pp. 207–263, Plenum Press, New York.CrossRefGoogle Scholar
  60. Satterlie, R. A., 1985a, Central generation of swimming activity in the hydrozoan jellyfish Aequoria aequoria, J. Neurobiol. 16:41–55.PubMedCrossRefGoogle Scholar
  61. Satterlie, R. A., 1985b, Putative extraocular photoreceptors in the outer nerve ring of Polyorchis penicillatus, J. exp. Zool. 233:133–137.CrossRefGoogle Scholar
  62. Schnorr von Carolsfeld, J., 1984, Contributions to Hydromedusan Neuroethology from a Study on Two Olindiads: Gonionemus vertens (Agassiz 1865) Eperetmus typus (Bigelow 1915), 283 pp., Victoria, British Columbia, Canada, University of Victoria, Master’s Thesis.Google Scholar
  63. Singla, C. L., 1974, Ocelli of hydromedusae, Cell. Tissue Res. 149:413–429.PubMedCrossRefGoogle Scholar
  64. Singla, C. L., and Weber, C., 1982a, Fine structure studies of the ocelli of Polyorchis penicillatus (Hydrozoa, Anthomedusae) and their connections with the nerve ring, Zoomorphology 99:117–129.CrossRefGoogle Scholar
  65. Singla, C. L., and Weber, C., 1982b, Fine structure of the ocellus of Sarsia tubulosa (Hydrozoa, Anthomedusae), Zoomorphology 100:11–22.CrossRefGoogle Scholar
  66. Spencer, A. N., 1988, Effects of Arg-Phe-amide peptides on identified motor neurons in the hydromedusa Pofyorchis penicillatus, Can. J. Zool. 66:639–645.CrossRefGoogle Scholar
  67. Spencer, A. N., and Arkett, S. A., 1984, Radial symmetry and the organization of central neurones in a hydrozoan jellyfish, J. exp. Biol. 110:69–90.Google Scholar
  68. Takasu, N., and Yoshida, M., 1984, Freeze-fracture and histofluorescence studies on photoreceptive membranes of medusan ocelli, Zoological Science 1:367–374.Google Scholar
  69. Tamasige, M., and Yamaguchi, T., 1967, Equilibrium orientation controlled by ocelli in an anthomedusa, Pofyorchis karafutoensis, Zool. Mag. 76:35–36.Google Scholar
  70. Thurston, M. H., 1977, Depth distribution of Hyperia spinigera Bovallius 1889 (Crustacea: Amphipoda) and medusae in the North Atlantic Ocean, with notes on the associations between Hyperia and coelenterates, in: A Voyage of discovery: George Deacon 70th anniversary volume (M. Angel, ed.), pp. 499–536, Pergamon Press Ltd., Oxford.Google Scholar
  71. Toh, Y., Yoshida, M., and Tateda, H., 1979, Fine structure of the ocellus of the hydromedusan, Spirocodon saltatrix, I. Receptor cells, J. Ultrastructure Res. 68:341–352.CrossRefGoogle Scholar
  72. Tomita, T., 1972, The electroretinogram, as analyzed by microelectrode studies, in: Handbook of Sensory Physiology, Volume VII/2, Physiology of photoreceptor organs (M.G.F. Fuortes, ed.), pp. 635–666, Springer-Verlag, Berlin.Google Scholar
  73. Vanfleteren, J. R., 1982, A monophyletic line of evolution? Ciliary induced photoreceptor membranes, in:Visual Cells in Evolution (J. A. Westfall, ed.) pp 107–136, Raven Press, New York.Google Scholar
  74. Weber, C., 1982a, Electrical activities of a type of electroretinogram recorded from the ocellus of a jellfish, Polyorchis penicillatus (Hydromedusa), J. Exp. Zool. 223:231–243.PubMedCrossRefGoogle Scholar
  75. Weber, C., 1982b, Electrical activity in response to light of the ocellus of the hydromedusan Sarsia tubulosa, Biol. Bull. 162:413422.CrossRefGoogle Scholar
  76. Westfall, J. A., 1982, Visual cells in evolution, 161 pp., Raven Press, New York.Google Scholar
  77. Wiederhold, M. L., MacNichol, E. F. Jr., and Bell, A. L., 1973, Photoreceptor spike responses in the hardshell clam, Mercenaria mercenaria, J. Gen. Physiol. 61:24–55.PubMedCrossRefGoogle Scholar
  78. Yamamoto, M., and Yoshida, M., 1980, Fine structure of ocelli of an anthomedusan, Nemopsis dofleini, with special reference to synaptic organization, Zoomorphology 96:169–181.CrossRefGoogle Scholar
  79. Yasuda, M., 1979, Extraocular photoreception, in Handbook of Sensory Physiology, Volume VII/6A, Comparative Physiology and Evolution of Vision in Invertebrates, A: Invertebrate Photoreceptors (H. Autrum, ed.), pp. 581-640, Springer-Verlag.Google Scholar
  80. Yoshida, M., 1959, Spawning in coelenterates, Experientia 15:11–13.CrossRefGoogle Scholar
  81. Yoshida, M., 1969, The ocellar pigment of the anthomedusa Spirocodon saltatrix: Does its photoreduction bear any physiological significance? Bull. Mar. Biol. St. Asamushi 13:215–219.Google Scholar
  82. Yoshida, M., 1972, Detection of a retinol-like substance and the relative abundance of carotenoids in different tissues of the anthomedusa, Spirocodon saltatrix, Vision Res. 12:169–182.CrossRefGoogle Scholar
  83. Yoshida, M., Honji, N., and Ikegami, S., 1980, Darkness induced maturation and spawning in Spirocodon saltatrix, in: Developmental and Cellular Biology of Coelenterates (P. Tardent and R. Tardent, eds.), pp. 75-82, Elsevier/North Holland Biomedical Press.Google Scholar
  84. Zelikman, E. A., 1969, Structural features of mass aggregations of jellyfish, Oceanology 9:58–564.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Stuart A. Arkett
    • 1
  1. 1.Department of Physiology, The Medical SchoolUniversity of BristolBristolUK

Personalised recommendations