Chemoreception in Unicellular Eukaryotes

  • Judith Van Houten
Part of the NATO ASI Series book series (NSSA, volume 188)


Every organism is surrounded by chemicals and each has the means to extract information from this chemical environment and to respond appropriately. This process, chemoreception, underlies the sensory processes of taste and smell in vertebrates and invertebrates, and of Chemotaxis and chemokinesis in unicellular organisms. There is no unifying theme among the types of chemical stimuli that affect chemoreceptors, but within this confusion of compounds there is order, because each stimulus fits into the context of the life of the organism: folic acid attracts the paramecia and shine-mold amoebae that feed on bacteria, the stimulus source; amino acids attract lobsters and catfish that prey on fresh or decaying muscle; pheromones are commonly used by insects or protozoans to attract mates. There are, however, aspects common to the various chemosensory transduction systems: they all appear to be initiated at the membrane surface of a receptor cell by the interaction of a stimulus with a receptor molecule (or perhaps in some cases, the membrane directly), and, subsequently, this interaction is transduced into intracellular messengers. These second and third messengers are limited in number and, for the most part, consist of cyclic nucleotides, permeant ions, phosphoinositides, diacyl glycerol, arachidonic acid and internal pH levels.


Adenylate Cyclase Olfactory Receptor Guanylate Cyclase Olfactory Epithelium Unicellular Eukaryote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ache, B., Chemoreception in invertebrates, in: Neurobiology of Taste and Smell (T. Finger and W. Silver, eds.), J. Wiley, 1987.Google Scholar
  2. Adamek, G. D., Gesteland, R. C., Mair, R. G., and Oakley, B., 1984, Transduction physiology of olfactory receptor cilia, Brain Res. 310:87–97.PubMedCrossRefGoogle Scholar
  3. Anholt, R. R. H., 1987, Primary events in olfactory reception, Trends in Biochem. Sci. 12:58–62.CrossRefGoogle Scholar
  4. Atema, J., 1987, Aquatic and terrestrial chemoreceptor organs: morphological and physiological designs for interfacing with chemical stimuli, in: Comparative Physiology: Life in Water and on Land (P. Dejours, L. Bolis, C. Taylor, and E. Weibel, eds.), Fidia Research Series.Google Scholar
  5. Blinder, D., Bouvier, S., and Jenness, D. D., 1989, Constitutive mutants in the yeast pheromone response: ordered function of the gene products, Cell 56:4799–4786.CrossRefGoogle Scholar
  6. Bruch, R., Kalinoski, D. L., and Huque, T., 1987, Role of GTP-binding regulatory proteins in receptor-mediated phosphoinositide turnover in olfactory cilia, Chem. sen. 12:173.Google Scholar
  7. Bruch, R., Rull, R. D., and Boyle, A. G., 1987, Olfactory L-amino acid receptor specificity and stimulation of potential second messengers, Chem. Sen. 12:642–643.Google Scholar
  8. Bryant, B., Brand, J. G., Kalinoski, D. L., Bruch, R. C., and Cagan, R. H., 1987, Use of monoclonal antibodies to characterize amino acid taste receptors in catfish: effects on binding and neural responses, in: Olfaction and Taste DC (S. Roper and J. Atema, eds.), NY Acad. Sci.Google Scholar
  9. Burkholder, A. C., and Hartwell, L. H., 1985, The yeast alpha-factor receptor, Nucl. Acid Res. 13:8463–8473.CrossRefGoogle Scholar
  10. Carr, W. E. S., Ache, B. W., and Gleeson, R. A., 1987, Chemoreceptors of crustaceans: similarities to receptors for neuroactive substances in internal tissues, Environ. Health Perspec. 71:31–46.CrossRefGoogle Scholar
  11. Carr, W. E. S., and Gleeson, R. A., 1989, Stimulants of feeding behavior in marine organisms: receptor and perireceptor evolution provide insight into mechanisms of mixture interactions, in: Perception of Complex Smells and Tastes (D. Laing, W. Caine, B. Ache, and R. McBride, eds.), Academic Press, Australia.Google Scholar
  12. Dangott, L. J., and Garbers, D. L., 1984, Identification and partial purification of the receptor for speract, J.Biol. Chem. 259:13712–13716.PubMedGoogle Scholar
  13. Derby, C. D., and Atema, J., 1988, Chemoreceptor cells in aquatic invertebrates, in: Sensory biology of aquatic animals, (J. Atema, R. Fay, A. Popper, and W. Tavolga, eds.), Springer-Verlag.Google Scholar
  14. Devreotes, P. and Zigmond, S., 1988, Chemotaxis in eukaryotic cells, Ann. Rec. Cell Biol. 4:649–686.CrossRefGoogle Scholar
  15. Dietzel, C., and Kurjan, J., 1987, The yeast SCG1 gene: a Ga-like protein implicated in the a-and a-factor response pathway, Cell 50:1001–1010.PubMedCrossRefGoogle Scholar
  16. DiNallo, M. C., Wohlford, M., and Van Houten, J., 1982, Mutants of Paramecium defective in chemokinesis to folate, Gen. 102:149–158.Google Scholar
  17. Dionne, V., 1988, How do you smell? Principle in question, TINS 11:188–189.PubMedGoogle Scholar
  18. Europe-Finner, G. N., and Newell, P. C., 1987, GTP analogues stimulate inositol triphosphate formation transiently in Dictyostelium, J. Cell Sci. 87:513–518.PubMedGoogle Scholar
  19. Garbers, D. L., Noland, T. D., Dangott, L. J., Ramarao, C. S., Bentley, J. K., 1986, The interaction of egg peptides with spermatozoa, in: Molecular and Cellular Aspects of Reproduction (D. Dhindsa and Om. P. Bahl, eds.).Google Scholar
  20. Getchell, T. V., and Getchell, M. L., 1987, Peripheral mechanisms of olfaction: biochemistry and neurophysiology, in: Neurobiology of Taste and Smell (T. Finger and W. Silver, eds.), J. Wiley and Sons.Google Scholar
  21. Getchell, T. V., Margolis, F. L., and Getchell, M. L., 1984, Perireceptor and receptor events in vertebrate olfaction, Prog. Neurobiol. 23:317–345.PubMedCrossRefGoogle Scholar
  22. Gold, G., and Nakamura, T., 1987, Cyclic nucleotide-gated conductances: a new class of ion channels mediates visual and olfactory transduction, TIPS 8:312–316.Google Scholar
  23. Goodenough, U., Adair, W. S., Collin-Osdoby, P., and Heuser, J. E., 1985, Structure of the Cnlamydomonas agglutinin and related flagellar surface proteins in vitro and in situ, J. Cell Biol. 101:924–941.PubMedCrossRefGoogle Scholar
  24. Hagen, D. C., McCaffrey, G. and Sprague, G. F., 1986, Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor. gene sequence and implications for the structure of the presumed receptor, Proc. Natl. Acad. Sci. (USA) 83:1418–1422.CrossRefGoogle Scholar
  25. Herskowitz, L., and Marsh, L., 1987, Conservation of a receptor/signal transduction system, Cell 50:995–996.PubMedCrossRefGoogle Scholar
  26. Janssens, P. M. W. and Van Haastert, P. J. M., 1987, Molecular basis of transmembrane signal transduction in Dictyostelium discoideum, Microbiol. Rev. 51:396–418.PubMedGoogle Scholar
  27. Jones, D. T., and Reed, R. R., 1989, Golf: an olfactory neuron specific-G protein involved in odorant signal transduction, Science 244:790–795.PubMedCrossRefGoogle Scholar
  28. Kauer, J. S., 1987, Coding in the olfactory system, in: Neurobiology of Taste and Smell (T. Finger and W. Silver, eds.), J. Wiley and Sons.Google Scholar
  29. Kinnamon, S. C., 1988, Taste transduction: a diversity of mechanisms, TINS 11:491–496.PubMedGoogle Scholar
  30. Klein, P. S., Sun, T. J., Saxe, C. L., Kimmel, A. R., Johnson, R. L., and Devreotes, P. N., 1988, A chemoattractant receptor controls development in Dictyostelium discoideum, Science 241:1467–1472.PubMedCrossRefGoogle Scholar
  31. Kumagai, A., Pupillo, M., Gundersen, R., Miake-Lye, R., Devreotes, P., and Firtel, R. A., 1989, Regulation and function of Ga protein subunits in Dictyostelium, Cell 57:265–267.PubMedCrossRefGoogle Scholar
  32. Labarcha, P., Simon, S., and Anholt, R. H., 1988, Activation of odorants of multistate cation channel from olfactory cilia, Proc. Nat. Acad. Sci. USA 85:944–947.CrossRefGoogle Scholar
  33. Lancet, D., and Pace, U., 1987, The molecular basis of odor recognition, TIBS 12:63–66.Google Scholar
  34. Leick, V., and Hellung-Larsen, P., 1985, Chemosensory responses in Tetranymena: the involvement of peptides and other signal substances, J. Protozool. 32:550–553.Google Scholar
  35. Lerner, M., Reagan, J., Gyorgi, T., and Roby, A., 1988, Olfaction by melanophores: what does it mean?, Proc. Natl. Acad. Sci. (USA) 85:261–264.CrossRefGoogle Scholar
  36. Levandowsky, M. L., Cheng, M., Kehr, A., Kim, J., Gardner, L., Silvern, L., Tsang, L., Lai, G., Chung, C., and Prakash, E., 1984, Chemosensory responses to amino acids and certain amines by the ciliate Tetranymena in a flat capillary assay, Biol. Bull. 167:322–330.CrossRefGoogle Scholar
  37. Lowe, B., Chang, M-S., Hellmess, R., Chin, E., Singh, S., Garbers, D., and Goeddel, D., 1989, Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction, EMBO J. 8:1377–1384.PubMedGoogle Scholar
  38. Lowe, G., Nakamura, T., and Gold, G. H., 1988, EOG amplitude is correlated with odor-stimulated adenylate cyclase activity in the bullfrog olfactory epithelium, Chem. Sen. 13:710.Google Scholar
  39. Marsh, L., and Herskowitz, I., 1988, STE2 protein of Saccharomyces cerevisisae is a member of the rhodopsin/β-adrenergic family and is responsible for recognition of the peptide ligand alpha factor, Proc. Natl. Acad Sci. (USA) 85:3844–3859.CrossRefGoogle Scholar
  40. Miyajima, I., Nakafuku, M., Nakayama, N., Brenner, C., Miyajima, A., Kaibuchi, K., Arai, K., Kaziro, Y., and Matsumoto, K., 1987, GPA1, a haploid-spedfic essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction, Cell 50:1011–1019.PubMedCrossRefGoogle Scholar
  41. Musgrave, A., and van den Ende, H., 1987, How Chlamydomonas court their partners, TIBS 12:469–473.Google Scholar
  42. Nakamura, N., Kaziro, Y., Arai, K-L., and Matsumoto, K., 1988, Role of STE genes in the mating factor signaling pathway mediated by GPA1 in Saccharomyces cerevisisae, Moke. Cell. Biol. 8:3777–3783.Google Scholar
  43. Newell, P. C., Europe-Finner, G. N., Small, N. V., and Liu, G., 1988, Inositol phosphates, G-proteins and ras genes involved in chemotactic signal transduction of Dictyostelium, J. Cell Sci. 89:123–127.PubMedGoogle Scholar
  44. O’Neill, J. B., Pert, C. B., Ruff, M. S., Smith, G. C., Higgins, W. J., and Zipser, B., 1987, Identification and characterization of the opiate receptor in the ciliated protozoan, Tetrahymena, Brain Res., in press.Google Scholar
  45. Pasquale, S.M., and Goodenough, U., 1987, Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii, J. Cell Biol. 105:2279–2292.PubMedCrossRefGoogle Scholar
  46. Persaud, K. C., Chiavacci, L., and Pelosi, P., 1988, Binding proteins for sweet compounds from gustatory papillae of the cow, pig and rat, Biochim. Biophys. Acta 967:65–75.PubMedCrossRefGoogle Scholar
  47. Preston, R. R., and Van Houten, J. L., 1987a, Chemoreception in Paramecium tetraurelia: acetate and folate-induced membrane hyperpolarization, J. Comp. Physiol. 160:525–535.CrossRefGoogle Scholar
  48. Preston, R. R., and Van Houten, J. L., 1987b, Localization of chemoreception properties of the surface membrane of Paramecium, J. Comp. Physiol. 160:537–541.CrossRefGoogle Scholar
  49. Price, S., and Willey, A., 1987, Benzaldehyde binding protein from dog olfactory epithelium, Ann. NY. Acad. Sci. 510:561–564.CrossRefGoogle Scholar
  50. Price, S., and Willey, A., 1988, Effects of antibodies against odorant binding proteins on electrophysiological responses to odorants, Biochim. Biophys. Acta 965:127–129.PubMedCrossRefGoogle Scholar
  51. Reneke, J. E., Blumer, K. J., Courchesne, W. E., and Thorner, J., 1988, The carboxy-terminal segment of the yeast α-factor receptor is a regulatory domain, Cell 55:221–234.PubMedCrossRefGoogle Scholar
  52. Roper, S., 1989, The cell biology of vertebrate taste receptors, Ann. Rey. Neurosci. 12:329–353.CrossRefGoogle Scholar
  53. Sasner, J. M., and Van Houten, J. L., 1989, Evidence for a Paramecium folate chemoreceptor, Chem. Sen., in press.Google Scholar
  54. Schlichtherle, I. M., Cote, B., Zhang, J., and Van Houten, J. L., 1989, The cyclic AMP chemoreceptor of Paramecium, Chem. Sen., abstract, in press.Google Scholar
  55. Schulz, S., Denaro, M., Xypolyta-Bulloch, A., and Van Houten, J., 1984, Relationship of folate binding to chemoreception in Paramecium, J. Comp. Physiol. 155:113–119.CrossRefGoogle Scholar
  56. Sha’afi, R. L., and Molski, R. F. P., 1987, Signalling for incresed cytoskeletal actin in neutrophils, Biochem. Biophys. Res. Comm. 145:934–941.CrossRefGoogle Scholar
  57. Sha’afi, R. L., and Molski, R. F. P., 1988, Activation of the neutrophil, Prog, in Allergy, in press.Google Scholar
  58. Shimomura, H., Dangott, L. J., and Garbers, D. L., 1986, Covalent coupling of a resact analogue to quanylate cyclase, J. Biol. Chem. 259:10983–10988.Google Scholar
  59. Singh, S., Lowe, D. G., Thorpe, D. S., Rodriguez, H., Kuang, W.-J., Daggott, L., Chinkers, M., Goeddel, D. V., and Garbers, D. L., 1988, Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases, Nature 334:708–712.PubMedCrossRefGoogle Scholar
  60. Sklar, P. B., Anholt, R., and Snyder, S. H., 1986, The odorant-sensitive adenylate cyclase of olfactory receptor cells, J. Biol. Chem. 261:15538–15543.PubMedGoogle Scholar
  61. Small, N. V., Europe-Finner, G. N., and Newell, P. C., 1987, Adaptation to chemotactic cyclic AMP signals in Dictyostelium involves the G-protein, J. Cell Sci. 88:537–545.PubMedGoogle Scholar
  62. Smith, R. A., Preston, R. R., Schulz, S., and Van Houten, J. L., 1987, Correlation of cyclic adenosine monophosphate binding and chemoresponse in Paramecium, Biochim. Biophys. Acta 928:171–178.PubMedCrossRefGoogle Scholar
  63. Snyder, S. H., Sklar, P. B., and Pevsner, J., 1988, Molecular mechanisms of olfaction, J. Biol. Chem. 263:13971–13974.PubMedGoogle Scholar
  64. Teeter, J. H., and Gold, G. H., 1988, A taste of things to come, Nature 331:298–299.PubMedCrossRefGoogle Scholar
  65. Trimmer, J. S., and Vacquier, V. D., 1986, Activation of sea urchin gametes, Ann. Rev. Cell Biol. 2:1–26.PubMedCrossRefGoogle Scholar
  66. Van Houten, J., 1978, Two mechanisms of chemotaxis in Paramecium, J. Comp. Physiol. 127:167–174.CrossRefGoogle Scholar
  67. Van Houten, J., 1979, Membrane potential changes during chemokinesis in Paramecium, Sci. 204:1100–1103.CrossRefGoogle Scholar
  68. Van Houten, J., 1990, Signal Transduction in chemoreception, in: Modern Cell Biology (J. Spudich, ed.), in press.Google Scholar
  69. Van Houten, J., and Preston, R., 1987, Chemoreception in single-celled organisms, in: Neurobiology of Taste and Smell (T. Finger and W. Silver, eds.), John Wiley and Sons.Google Scholar
  70. Van Houten, J., and Van Houten, J. L., 1982, Computer analysis of Paramecium chemokinesis behavior, J. Theor. Biol. 98:453–468.CrossRefGoogle Scholar
  71. Vogt, R. G., 1987, The molecular basis of pheromone reception: its influence on behavior, in: Pheromone Biochemistry (G. Prestwich and G. Blomquist, eds.), Academic Press.Google Scholar
  72. Vogt, R. G., Prestwich, G. D., and Riddiford, L. M., 1988, Sex pheromone receptor proteins, J. Biol. Chem. 263:3952–3959.PubMedGoogle Scholar
  73. Whiteway, M., Hougan, L., Digard, D., Thomas, D., Bell, L., Saari, G., Grant, F., O’Harra, P., and MacKay, V. L., 1989, The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein, Cell 56:467–477.PubMedCrossRefGoogle Scholar
  74. Wright, M. V., and Van Houten, J. L., 1989, Calcium ATPase as part of the transduction pathway in Paramecium chemoreception, Chem, Sen., abstract, in press.Google Scholar
  75. Ztpser, B., Rutt, M. R., O’Neill, J. B., Smith, C. C., Higgins, W. J., and Pert, C. B., 1988, The opiate receptor a single 110 K Da recognition molecule appears to be conserved in Tetrafymena, leech and rat, Brain Res. 463:296–304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Judith Van Houten
    • 1
  1. 1.Department of ZoologyUniversity of VermontBurlingtonUSA

Personalised recommendations