Advertisement

Polyclad Neurobiology and the Evolution of Central Nervous Systems

  • Harold Koopowitz
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

The rationale for studying flatworm neurobiology has long been the fact that, anatomically, their nervous systems appear to be intermediate between those of the Cnidarians and the more centralized ones of higher metazoans. It has been thought that understanding flatworm nervous systems would lead to an appreciation of, and insight into, the events involved with the early evolution of brains and central nervous systems. One of the problems of this approach is that the early events that occurred during the initial centralization of nervous systems must have happened so long ago in time that present day organisms can only represent a mere shadow of the actual events. We do not know if centralization occurred several times and independently. Certainly one suspects that the centralization in the Cnidaria and in the Hemichordata might have been independent of those of other metazoans. It is not clear if this also implies that the initial centralization of the protostome and deuterostome lines is independent.

Keywords

Instrumental Conditioning Initial Centralization Response Decrement Multipolar Cell Electrotonic Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chien, P., and Koopowitz, H., 1972, The ultrastructure of neuromuscular systems in Notoplana acticola, a free-living polyclad flatworm, Z. Zellforsch. 133:277–288.PubMedCrossRefGoogle Scholar
  2. Coss, R. G., and Globus, A., 1978, Spine stems on tectal interneurones in jewel fish are shortened by social stimulation, Science 200:787–790.PubMedCrossRefGoogle Scholar
  3. Corning, W. C., and Kelly, S., 1975, Platyhelminthes: the Turbellarians, in: Invertebrate Learning, (Corning, W. C., Dyal, J. A., and Willows, A. O. D., eds.) 1:171–218, Plenum Press, New York.CrossRefGoogle Scholar
  4. Davies, L., Keenan, L., and Koopowitz, H., 1985, Nerve repair and behavioral recovery following brain transplantation in Notoplana acticola, a polyclad flatworm, J. Exp. Zool. 235:157–173.PubMedCrossRefGoogle Scholar
  5. Ehlers, U., 1986, Comments on a phylogenetic system of the Platyhelminthes, in: Advances in the Biology of Turbellarians and Related Platyhelminthes (S. Tyler, ed.), Hydrobiologia 132:1–12.CrossRefGoogle Scholar
  6. Faisst, J. L., Keenan, L. and Koopowitz, H., 1980, Neuronal repair and avoidance behavior in the flatworm, Notoplana acticola,J. Neurobiol. 11:483–496.PubMedCrossRefGoogle Scholar
  7. Gruber, S., and D. W. Ewer, 1962, Observations on the myo-neural physiology of the Polyclad, Planocera gilchristi, J. exp. Biol. 39:459–477.Google Scholar
  8. Golubev, A. L., 1988, Glia and neuroglia relationships in the central nervous system of the Turbellaria (Electron microscopic data), in: Free-living and Symbiotic Platyhelminthes (P. Ax, U. Ehlers, and B. Sopott-Ehlers, eds.), Prog. Zool. 36:185–190.Google Scholar
  9. Hauser, M., and Koopowitz, H., 1987, Age-dependent changes in fluorescent neurons in the brain of Notoplana acticola, a polyclad flatworm, J. Exp. Zool. 241:217–225.PubMedCrossRefGoogle Scholar
  10. Hendelberg, J., 1986, The phylogenetic significance of sperm morphology in the Platyhelminthes, in: Advances in the Biology of Turbellarians and Related Platyheiminthes (S. Tyler, ed.), Hydrobiologia 132:53–58.CrossRefGoogle Scholar
  11. Hon, H., Muto, A., Osawa, S., Takai, M., Lue, K., and Kawakatsu, M., 1988, Evolution of Turbellaria as deduced from 5S ribosmal RNA sequences, in: Free-living and Symbiotic Platyhelminthes (P. Ax, U. Ehlers, and B. Sopott-Ehlers, eds), Prog. Zool. 36:163–167.Google Scholar
  12. Keenan, C. L., and Koopowitz, H., 1981, Tetrodotoxin-sensitive action potentials from the brain of the polyclad flatworm Notoplana acticola,J. Exp. Zool. 215:209–213.CrossRefGoogle Scholar
  13. Keenan, L., and Koopowitz, H., 1984, Ionic bases of action potentials in identified flatworm neurones, J. Comp. Physiol. A 155:197–208.CrossRefGoogle Scholar
  14. Keenan, L., Koopowitz, H., and Bernardo, K., 1979, Primitve nervous systems: action of aminergic drugs and blocking agents on activity in the ventral nerve cord of the flatworm Notoplana acticola, J. Neurobiol. 10:397–407.PubMedCrossRefGoogle Scholar
  15. Koopowitz, H., 1970, Feeding behavior and the role of the brain in the polyclad flatworm, Planocera gilchristi, Anim. Behav. 18:31–35.CrossRefGoogle Scholar
  16. Koopowitz, H., 1973, Primitive nervous systems. A sensory nerve net in the polyclad flatworm Notoplana acticola, Biol. Bull. 145:352–359.CrossRefGoogle Scholar
  17. Koopowitz, H., 1975, Electrophysiology of the peripheral nerve net in the polyclad flatworm Freemania litoricola, J. exp. Biol. 62:469–479.PubMedGoogle Scholar
  18. Koopowitz, H., 1982, The neurobiology of free-living flatworms, in: Electrical Conduction and Behavior in Simple Invertebrates (G. Shelton, ed.), Clarendon Press, Oxford.Google Scholar
  19. Koopowitz, H., and Chien, P., 1974, Ultrastructure of nerve plexus in flatworms. I. Peripheral organization, Cell. Tiss. Res. 155:337–351.Google Scholar
  20. Koopowitz, H., and Chien, P., 1975, Ultrastructure of nerve plexus in flatworms. II. Sites of synaptic activity, Cell. Tiss. Res. 157:207–216.Google Scholar
  21. Koopowitz, H., Silver, D., and Rose, G., 1976, Primitive nervous systems. Control and recovery of feeding behavior in the polyclad flatworm, Notoplana acticola, Biol. Bull. 150:411–425.PubMedCrossRefGoogle Scholar
  22. Kotikova, E. A., 1986, Comparative characterization of the nervous system of the Turbellaria, in: Advances in the Biology of the Turbellarians and Related Platyhelminthes (S. Tyler, ed.), Hydrobiologia 132:82–92.Google Scholar
  23. Kotikova, E. A., and Joffe, B. I., 1988, On the nervous system of the dalyellioid turbellarians, in: Free-living and Symbiotic Platyhelminthes (P. Ax, U. Ehlers, and B. Sopott-Ehlers, eds.) 36:191–194.Google Scholar
  24. Reuter, M., 1988, Development and organization of nervous system visualized by immunocytochemistry in three flatworm species, in: Free-living and Symbiotic Platyhelminthes (P. Ax, U. Ehlers, and B. Sopott-Ehlers, eds.), Prog. Zool. 36:181–184.Google Scholar
  25. Reuter, M., Lehtonen, M., and Wikgren, M., 1986, Immunocytochemical demonstration of 5-HT-like and FMRF-amide-like substances in whole mounts of Micostomum lineare (Turbellaria), Cell Tiss. Res. 246:7–12.Google Scholar
  26. Smith, J., Teyier, S., and Rieger, R. M., 1986, Is the Turbellaria polyphyletic? in: Advances in the Biology of TurbeUarians and Related Platyhelminthes (S. Tyler, ed.), Hydrobiologia 132:13–21.CrossRefGoogle Scholar
  27. Solon, M., and Koopowitz, H., 1982, Multimodal interneurones in the polyclad flatworm, Alloeoplana californica, J. Comp. Physiol. 147:171–178.CrossRefGoogle Scholar
  28. Stone, G., and Koopowitz, H., 1976, Primitive nervous systems: electrophysiology of the pharynx of the polyclad flatworm Enchiridium punctatum, J. exp. Biol. 65:627–642.PubMedGoogle Scholar
  29. Thomas, M. B., 1986, Embryology of the Turbellaria and its phylogenetic significance, in: Advances in the Biology of Turbellarians and Related Platyhelminthes (S. Tyler, ed.), Hydrobiologia 132:105–115.CrossRefGoogle Scholar
  30. Wikgren, M., Reuter, M., and Gustafsson, M., 1986, Neuropeptides in free-living and parasitic flatworms (Platyhelmtnthes). An immunocytochemical study, in: Advances in the Biology of Turbellarians and Related Platyhelminthes (S. Tyler, ed.), Hydrobiologia 132:93–99.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Harold Koopowitz
    • 1
  1. 1.Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineUSA

Personalised recommendations