Ionic Currents in Ctenophore Muscle Cells

  • André Bilbaut
  • Mari-Luz Hernandez-Nicaise
  • Robert W. Meech
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

The term Coelenterate includes two phylla, the Cnidaria and the Ctenophora. Typically, they are diploblastic organisms in which an ectoderm is separated from an endoderm by a gelatinous layer, the mesoglea. Ctenophora appear phylogenetically more advanced than Cnidaria. In Cnidaria the mesoglea is generally acellular and the muscle system consists mainly of myoepthelial cells. Ctenophores have differentiated true muscle cells embedded in the mesoglea. The phylogenetic significance of the presence of muscle cells in the mesoglea of Ctenophores is still debated.

Keywords

Smooth Muscle Cell Ionic Current Outward Current Membrane Current Action Potential Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P. A. V., 1984, The electrophysiology of single smooth muscle cells isolated from the ctenophore Mnemiopsis, J. Comp, Physiol. B 154:257–268.CrossRefGoogle Scholar
  2. Berger, W., Grygprcyk, R., and Schwarz, W., 1984, Single K+ channels in membrane evaginations of smooth muscle cells, Pfülgers Arch. 402:18.CrossRefGoogle Scholar
  3. Bilbaut, A., Meech, R. W., and Hernandez-Nicaise, M.-L., 1988a, Isolated giant smooth muscle fibres in Beroe ovata: ionic dependence of action potentials reveals two distinct types of fibre, J. exp. Biol. 135:343–362.Google Scholar
  4. Bilbaut, A., Hernandez-Nicaise, M.-L., and Meech, R. W., 1988b, Membrane currents that govern smooth muscle contraction in a ctenophore, Nature 331:533–535.PubMedCrossRefGoogle Scholar
  5. Brading, A., Bulbring, E., and Tomita, T., 1969, The effect of sodium and calcium on the action potential of the smooth muscle of guinea-pig teania coli, J. Physiol. (Lond.) 200:637–654.Google Scholar
  6. Connor, J. A., and Stevens, C. F., 1971, Voltage clamp studies of a transient outward current in gastropod neural somata, J. Physiol. (Lond.) 213:21.Google Scholar
  7. Dubas, F., Stein, P. G., and Anderson, P. A. V., 1988, Ionic currents of smooth muscle cells isolated from the ctenophore Mnemiopsis, Proc. R. Soc. Lond. B233:99–121.PubMedCrossRefGoogle Scholar
  8. Fatt, P., and Ginsborg, B. L., 1958, The ionic requirements for the production of action potentials in crustacean muscle cells, J. Physiol. (Lond.) 142:516–543.Google Scholar
  9. Febvre-Chevallier, C., Bilbaut, A., Bone, Q., and Febvre, J., 1986, Sodium-calcium action potential associated with contraction in the heliozoan Actinocoryne contractilis, J. exp. Biol. 122:177–192.Google Scholar
  10. Hagiwara, S., and Byerly, L., 1981, Calcium channel, Ann. Rev. Neurosci. 4:69–125.PubMedCrossRefGoogle Scholar
  11. Hagiwara, S., and Kidokoro, Y., 1971, Na and Ca components of action potential in amphioxus muscle cells, J. Physiol. (Lond.) 219:217–232.Google Scholar
  12. Hagiwara, S., Kusano, K., and Saito, N., 1961, Membrane changes on Onchidium nerve cell in potassium-rich media, J. Physiol. (Lond.) 155:470–489.Google Scholar
  13. Hernandez-Nicaise, M.-L., and Amsellem, J., 1980, Ultrastmcrure of the giant smooth muscle fiber of the ctenophore Beroe ovata, J. Ultrastr. Res. 72:151–168.CrossRefGoogle Scholar
  14. Hernandez-Nicaise, M.-L., Mackie, G.O., and Meech, R. W., 1980, Giant smooth muscle cells of Beroe. Ultrastructure, innervation, and electrical properties, J. Gen. Physiol. 75:79–105.PubMedCrossRefGoogle Scholar
  15. Hernandez-Nicaise, M.-L., Nicaise, G., and Anderson, P. A. V., 1981, Isolation of giant smooth muscle cells from the ctenophore Mnemiopsis, Am. Zool. 21:1012.Google Scholar
  16. Hernandez-Nicaise, M.-L., Bilbaut, A., Malaval, L., and Nicaise, C., 1982, Isolation of functional giant smooth muscle cells from an invertebrate: structural features of relaxed and contracted fibers, Proc. Nat Acad. Sci. USA 79:1884–1888.PubMedCrossRefGoogle Scholar
  17. Hernandez-Nicaise, M.-L., Nicaise, G., and Malaval, L., 1984, Giant smooth muscle fibers of the ctenophore Mnemiopsis leydii: ultrastructural study of in situ and isolated cells, Biol. Bull. 167:210–228.CrossRefGoogle Scholar
  18. Horridge, G. A., 1966, Pathways of coordination in ctenophores, in: The Cnidaria and their Evolution (W. J. Reese, ed.), Academic Press, London.Google Scholar
  19. Isenberg, G., and Klöckner, U., 1985, Calcium currents of smooth muscle cells isolated from the urinary bladder of the guinea-pig: inactivation, conductance and selectivity is controlled by micromolar amounts of [Ca]o, J. Physiol. (Lond.) 358:60P.Google Scholar
  20. Jmari, K., Mironneau, C., and Mironneau, J., 1986, Inactivation of calcium channel current in rat uterine smooth muscle: evidence for calcium-and voltage-mediated mechanisms, J. Physiol. (Lond.) 380:111–126.Google Scholar
  21. Jmari, K., Mironneau, C., and Mironneau, J., 1987, Selectivity of calcium channels in rat uterine smooth muscle: interaction between sodium, calcium and barium ions, J. Physiol. (Lond,) 384:247.Google Scholar
  22. Kidokoro, Y., Hagftvara, S., and Henkart, M. P., 1974, Electrical properties of obliquely striated muscle fiber membrane of Anodonta glochidium, J. Comp. Physiol. 90:321.CrossRefGoogle Scholar
  23. Meech, R. W., 1978, Calcium-dependent potassium current in nervous tissues, Ann. Rev. Biophys. Bioeng. 7:1–18.CrossRefGoogle Scholar
  24. Meech, R. W., and Standen, N. B., 1975, Potassium activation in Helix aspersa neurones under voltage-clamp: a component mediated by calcium influx, J. Physiol. (Lond.) 249:211–239.Google Scholar
  25. Mironneau, J., and Savineau, J. P., 1980, Effects of calcium ions on outward membrane currents in rat uterine smooth muscle, J. Physiol. (Lond.) 302:411425.Google Scholar
  26. Mironneau, J., Eugene, D., and Mironneau, C., 1982, Sodium action potentials induced by calcium chelation in rat uterine smooth muscle, Pfülgers Arch. 395:232–238.CrossRefGoogle Scholar
  27. Nowycky, M. C., Fox, A., and Tsien, R. W., 1985, Three types of neuronal calcium channels with different calcium agonist sensitivity, Nature 307:468.Google Scholar
  28. Prosser, C. L., Kreulen, D. L., Weigel, R. J., and Yau, W., 1977, Prolonged action potentials in gastrointestinal muscles induced by calcium chelation, Amer. J. Physiol. 233:C19–C24.PubMedGoogle Scholar
  29. Reuter, H., 1975, Divalent cations as charge carriers in excitable membranes, in: Calcium Movement in Excitable Cells (P. F. Baker and H. Reuter, eds.), Pergamon Press.Google Scholar
  30. Stein, P. G., and Anderson, P. A. V., 1984, Maintainance of isolated smooth muscle cells of the ctenophore Mnemiopsis, J. exp. Biol. 110:329–334.PubMedGoogle Scholar
  31. Spencer, A. N., and Satterlie, R. A., 1981, The action potential and contraction in subumbrellar swimming muscle ofPolyorchis penicillatus (Hydromedusae), J. Comp. Physiol. 144:401.CrossRefGoogle Scholar
  32. Vassort, G., 1975, Voltage-clamp analysis of transmembrane ionic currents in guinea-pig myometrium: evidence for an initial potassium activation triggered by calcium influx, J. Physiol. (Lond.) 252:713–734.Google Scholar
  33. Walsh, J. W., and Singer, J. J., 1980, Calcium action potential in single freshly isolated smooth muscle cells, Amer. J. Physiol. 239:C162–C174.PubMedGoogle Scholar
  34. Walsh, J. W., and Singer, J. J., 1983, Ca2+-activated K+ channels in vertebrate smooth muscle cells, Cell Calcium 4:321–330.PubMedCrossRefGoogle Scholar
  35. Washio, H., 1972, The ionic requirements for the initiation of action potentials in insect muscle fibers, J. Gen. Physiol. 59:121.PubMedCrossRefGoogle Scholar
  36. Werman, R., and Grundfest, H., 1961, Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers, J. Gen. Physiol. 45:997–1027.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • André Bilbaut
    • 1
  • Mari-Luz Hernandez-Nicaise
    • 1
  • Robert W. Meech
    • 2
  1. 1.Laboratoire de Cytologie Expérimentale, U.RA. 651Université de NiceNice CedexFrance
  2. 2.Department of Physiology, The Medical SchoolUniversity of BristolUniversity Walk, BristolUK

Personalised recommendations