The Electrophysiology of Swimming in the Jellyfish Aglantha digitale

  • Robert W. Meech
Part of the NATO ASI Series book series (NSSA, volume 188)


Many jellyfish are capable of avoiding potentially damaging stimuli, but their responses are generally slow and highly localized (Mackie, 1984). However two members of the Rhopalonematidae, the largest of the five families in the suborder Trachymedusae, have been observed to perform rapid escape swimming. The most well known of these is Aglantha digitale (Fig. 1) found in many of the colder waters of the world (Donaldson et al., 1980); the other is Amphogona apicata found in the Bahamas (Mills et al., 1985). Amphogona closely resembles Aglantha and it is to Aglantha that the work described in this chapter refers.


Conduction Velocity Myoepithelial Cell Giant Axon Bathing Medium Chemical Synapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. A. V., 1985, Physiology of a bidirectional, excitatory, chemical synapse, J. Neurophysiol. 53:821–835.PubMedGoogle Scholar
  2. Arkett, S. A., Mackie, G. O., and Meech, R. W., 1988, Hair-cell mechanoreception in the jellyfish, Aglantha digitale, J. exp. Biol. 135:329–342.Google Scholar
  3. Armstrong, C. M., and Matteson, D. R., 1985, Two distinct populations of calcium channels in a clonal line of pituitary cells, Science 227:65–67.PubMedCrossRefGoogle Scholar
  4. Barr, L., Dewey, M. M., and Berger, W., 1965, Propagation of action potentials and the structure of the nexus in cardiac muscle, J. Gen. Physiol. 48:797–823.PubMedCrossRefGoogle Scholar
  5. Bean, B. P., 1985, Two kinds of calcium channels in canine atrial cells, J. Gen. Physiol. 86:1–30.PubMedCrossRefGoogle Scholar
  6. Bloedel, J. R., Gage, P. W., Llinás, R., and Quastel, D. M. J., 1966, Transmitter release at the squid giant synapse in the presence of tetrodotoxin, Nature 212:49–50.PubMedCrossRefGoogle Scholar
  7. Bossu, J.-L., and Feltz, A., 1986, Inactivation of the low-threshold transient calcium current in rat sensory neurones: evidence for a dual process, J. Physiol. (Lond.) 376:341–357.Google Scholar
  8. Carbone, E., and Lux, H. D., 1984, A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones, Nature 310:501–502.PubMedCrossRefGoogle Scholar
  9. Coulter, D. A., Huguenard, J. R., and Prince, D. A., 1989, Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current, J. Physiol. (Lond.) 414:587–604.Google Scholar
  10. Crunelli, V., Lightowler, S., and Pollard, C. E., 1989, A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus, J. Physiol. (Lond) 413:543–561.Google Scholar
  11. Deitmer, J. W., 1984, Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia, J. Physiol. (Lond.) 355:137–159.Google Scholar
  12. Detwiler, P. B., and Hodgkin, A. L., 1979, Electrical coupling between cones in turtle retina, J. Physiol. (Lond) 291:75–100.Google Scholar
  13. Donaldson, S., Mackie, G. O., and Roberts, A., 1980, Preliminary observations on escape swimming and giant neurones in Aglantha digitale (Hydromedusae: Trachylina), Can. J. Zool. 58:549–552.CrossRefGoogle Scholar
  14. Eisenberg, R. S., and Johnson, E. A., 1970, Three-dimensional electrical field problems in physiology, Prog. in Biophys. and Mol. Biol. 20:1–65.CrossRefGoogle Scholar
  15. Fatt, P., and Katz, B., 1951, An analysis of the end-plate potential recorded with an intracellular electrode, J. Physiol. (Lond) 115:320–370.Google Scholar
  16. Fedulova, S. A., Kostyuk, P. G., and Veselovksy, N. S., 1985, Two types of calcium channels in the somatic membrane of new-born rat dorsal root ganglion neurones, J. Physiol. (Lond) 359:431–446.Google Scholar
  17. Fox, A. P., and Krasne, S., 1984, Two calcium currents in Neanthes arenaceodentatus egg cell membranes, J. Physiol. (Lond) 356:491–505.Google Scholar
  18. Fox, A. P., 1981, Voltage-dependent inactivation of a calcium channel, Proc. Natl. Acad Sci. USA 78:953–956.PubMedCrossRefGoogle Scholar
  19. Fox, A. P., Nowycky, M. C., and Tsien, R. W., 1987, Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones, J. Physiol. (Lond.) 394:149–172.Google Scholar
  20. Friedman, A., and Gutnick, M. J., 1987, Low-threshold calcium electrogenesis in neocortical neurons, Neuroscience Letters 81:117–122.PubMedCrossRefGoogle Scholar
  21. Frömter, E., 1972, The route of passive ion movement through the epithelium of Necturus gallbladder, J. Memb. Biol. 8:259–301.CrossRefGoogle Scholar
  22. Gladfelter, W. B., 1973, A comparative analysts of the locomotory systems of medusoid Cnidaria, Helgol. Wiss. Meeresunters 25:228–272.CrossRefGoogle Scholar
  23. Goldman, D.E., 1943, Potential, impedance and rectification in membranes, J. Gen. Physiol. 27:37–60.PubMedCrossRefGoogle Scholar
  24. Greene, R. W., Haas, H. L., and McCarley, R. W., 1986, A low threshold calcium spike mediates firing pattern alterations in pontine reticular neurons, Science 234:738–740.PubMedCrossRefGoogle Scholar
  25. Hagiwara, S., Kusano, K., and Saito, S., 1961, Membrane changes on onchidium nerve cell in potassium-rich media, J. Physiol. (Lond) 155:470–489.Google Scholar
  26. Hagiwara, S., Ozawa, S., and Sand, O., 1975, Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish, J. Gen. Physiol. 65:617–644.PubMedCrossRefGoogle Scholar
  27. Halliwell, J. V., 1983, Caesium-loading reveals two distinct Ca-currents in voltage-clamped guinea-pig hippocampal neurones in vitro,J. Physiol. (Lond.) 341:10P.Google Scholar
  28. Hodgkin, A.L. and Katz, B., 1949, The effect of sodium ions on the electrical activity of the giant axon of the squid, J. Physiol. (Lond) 108:37–77.Google Scholar
  29. Iverson, L. E., Tanouye, M. A., Lester, H. A., Davidson, N., and Rudy, B., 1989, Potassium channels from Shaker RNA expressed in Xenopus oocytes, Proc. Natl. Acad. Sci. USA 85:5723–5727.CrossRefGoogle Scholar
  30. Jack, J. J. B., Noble, D., and Tsien, R. W., 1975, Electrical current flow in exitable cells, pp. 83–97, Clarendon Press, Oxford.Google Scholar
  31. Josephson, R. K., and Schwab, W. E., 1979, Electrical properties of an excitable epithelium, J. Gen, Physiol. 74:213–236.CrossRefGoogle Scholar
  32. Josephson, R. K., 1985, Communication by conducting epithelia, in: Comparitive Neurobiology; Modes of Communication in the Nervous System (M. J. Cohen and F. Strumwasser, eds.), Wiley Interscience Publications, New York.Google Scholar
  33. Katz, B., and Miledi, R., 1965, The effect of temperature on the synaptic delay at the neuromuscular junction, J. Physiol. (Lond) 181:656–670.Google Scholar
  34. Kerfoot, P. A. H., Mackie, G. O., Meech, R. W., Roberts, A., and Singla, C. L., 1985, Neuromuscular transmission in the jellyfish Aglantha digitale, J. exp. Biol. 116:1–25.PubMedGoogle Scholar
  35. Lester, H. A., 1970, Trasmitter release by presynaptic impulses in the squid stellate ganglion, Nature 227:493–496.PubMedCrossRefGoogle Scholar
  36. Llinás, R., and Jahnsen, H., 1982, Electrophysiology of mammalian thalamic neurones in vitro, Nature 297:406–408.PubMedCrossRefGoogle Scholar
  37. Llinás, R., and Yarom, Y., 1981, Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurons in vitro, J. Physiol. (Lond.) 315:549–567.Google Scholar
  38. Mackie, G. O., 1980a, Slow swimming and cyclical “fishing” behavior in Aglantha digitale (Hydromedusae: Trachylina), Can. J. Fish. Aquat. Sci. 37:1550–1556.CrossRefGoogle Scholar
  39. Mackie, G. O., 1980b, Epithelium, McGraw Hill Yearbook Science and Technology, McGraw-Hill Book Company, Inc.Google Scholar
  40. Mackie, G. O., 1984, Fast pathways and escape behavior in Cnidaria, in: Neural Mechanisms of Startle Behavior (R.C. Eaton, ed.), Plenum Publishing Corp.Google Scholar
  41. Mackie, G. O., and Meech, R. W., 1985, Separate sodium and calcium spikes in the same axon, Nature 313:791–793.PubMedCrossRefGoogle Scholar
  42. Mackie, G. O., and Meech, R. W., 1989, Potassium channel family in axons of the jellyfish Aglantha digitale,J. Physiol. (Lond.), in press.Google Scholar
  43. Mackie, G. O., and Mills, C. E., 1983, Use of the PISCES IV submersible for Zooplankton studies in coastal waters of British Columbia, Can. J. Fish. Aquat. Sci. 40:763–776.CrossRefGoogle Scholar
  44. Mackie, G. O., and Passano, L. M., 1968, Epithelial conduction in Hydromedusae, J. Gen. Physiol. 52:600–621.CrossRefGoogle Scholar
  45. Meech, R. W., Arkett, S. A., Mackie, G. O., and Maitland, N. J., 1989, Potassium channel family in the jellyfish, Aglantha, Soc. Neuroseience Abstracts 1989. Google Scholar
  46. Mills, C. E., Mackie, G. O., and Singla, C. L., 1985, Giant nerve axons and escape swimming in Amphogona apicata with notes on other hydromedusae, Can J. Zool. 63:2221–2224.CrossRefGoogle Scholar
  47. Narahashi, T., Tsunoo, A., and Yoshii, M., 1987, Characterization of two types of calcium channels in mouse neuroblastoma cells, J. Physiol. (Lond.) 383:231–249.Google Scholar
  48. Payton, B. W., Bennett, M. V. L., and Pappas, G. D., 1969, Permeability and structure of junctional membranes at an electrotonic synapse, Science 166:1641–1643.PubMedCrossRefGoogle Scholar
  49. Roberts, A., and Mackie, G. O., 1980, The giant axon escape system of a hydrozoan medusa, Aglantha digitale, J. exp. Biol. 84:303–319.PubMedGoogle Scholar
  50. Satterlie, R. A., and Spencer, A. N., 1983, Neuronal control of locomotion in hydrozoan medusae, J. Comp. Physiol. A150:195–206.CrossRefGoogle Scholar
  51. Schwab, W. E., and Josephson, R. K., 1982, Lability of conduction velocity during repetitive activity of an excitable epithelium, J. exp. Biol. 98:175–193.PubMedGoogle Scholar
  52. Schwarz, T. L., Tempel, B. L., Papazian, D. M., Jan, Y. N., and Jan, L. Y., 1988, Multiple potassium channel components are produced by alternative splicing at the Shaker locus of Drosophila, Nature 331:137–142.PubMedCrossRefGoogle Scholar
  53. Shiba, H., 1971, Heaviside’s “Bessel cable” as an electric model for flat simple epithelial cells with low resistive junctional membranes, J. Theoretical Biol. 30:59–68.CrossRefGoogle Scholar
  54. Singla, C. L., 1978, Locomotion and neuromuscular system of Aglantha digitale, Cell Tiss. Res. 188:317–327.Google Scholar
  55. Spencer, A. N., 1978, Neurobiology of Polyorchis. I. Function of effector systems, J. Neurobiol. 9:143–157.PubMedCrossRefGoogle Scholar
  56. Spencer, A. N., 1979, Neurobiology of Polyorchis. II. Structure of effector systems, J. Neurobiol. 10:95–117.PubMedCrossRefGoogle Scholar
  57. Spencer, A. N., 1982, The physiology of a coelenterate neuromuscular synapse, J. Comp. Physiol. 148:353–363.CrossRefGoogle Scholar
  58. Takeuchi, A., and Takeuchi, N., 1962, Electrical changes in the pre-and post-synaptic axons of the giant synapse of Loligo, J. Gen. Physiol. 45:1181–1193.PubMedCrossRefGoogle Scholar
  59. Weber, C., Singla, C. L., and Kerfoot, P. A. H., 1982, Microanatomy of subumbrellar motor innervation in Aglantha digitate (Hydromedusae: Trachylina), Cell Tiss. Res. 223:305–312.CrossRefGoogle Scholar
  60. Wilcox, K. S., Gutnick, M. J., and Christoph, G. R., 1988, Electrophysiological properties of neurons in the lateral habenula nucleus: an in vitro study, J. Neurophysiol. 59:212–225.PubMedGoogle Scholar
  61. Woodbury, J. W., and Crill, W. E., 1961, On the problem of impulse conduction in the atrium, in: Nervous Inhibition, pp. 124–135 (E. Florey, ed.), Pergamon Press, Oxford.Google Scholar
  62. Zagotta, W. N., Brainard, M. S., and Aldrich, R. W., 1988, Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle, J. Neurosci. 8:4765–4779.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Robert W. Meech
    • 1
  1. 1.Department of PhysiologyUniversity of BristolUniversity Walk, BristolUK

Personalised recommendations