Ion Channels and the Cellular Behavior of Stylonychia

  • Joachim W. Deitmer
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

Unicellular organisms require some unique adaptations to their environment, such as the necessity to incorporate all functions needed for survival onto a single cell, and the ability to cope with their direct exposure to the outside world. Their unicellular existence imposes restrictions that multicellular organisms have circumvented by distributing different functions onto different cell types. This is most evident if we compare animal behavior with “cellular behavior” of protozoa. The sequence of events underlying behavior in animals includes sensory perception by sense organs, processing of the sensory information and translating this into motor programs by the nervous system, and movements carried out by activation of muscles. Thus, different types of cells and organs with varying degrees of specialization contribute to the behavioral performance of multicellular animals.

Keywords

Divalent Cation Outward Current Unicellular Organism Frog Skeletal Muscle Receptor Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aimers, W., Mcdeskey, E. W., and Palade, P. T., 1984, A non-selective cation conductance in frog muscle membrane blocked by micromolar external calcium ions, J. Physiol. (Lond.) 353:565.Google Scholar
  2. Deitmer, J. W., 1981, Voltage and time characteristics of the potassium mechanoreceptor current in the ciliate Stylonychia,J. Comp. Physiol. A 141:173.CrossRefGoogle Scholar
  3. Deitmer, J. W., 1982, The effects of tetraethylammonium and other agents on the potassium mechanoreceptor current in the ciliate Stylonychia, J. exp. Biol. 96:239.PubMedGoogle Scholar
  4. Deitmer, J. W., 1984, Evidence for two voltage-dependent calcium currents in the membrane of the ciliate Stylonychia, J. Physiol. (Lond.) 355:137.Google Scholar
  5. Deitmer, J. W., 1986, Voltage-dependence of two inward currents carried by calcium and barium in the ciliate Stylonychia mytilus, J. Physiol. (Lond.) 380:551.Google Scholar
  6. Deitmer, J. W., 1988, Multiple types of calcium channels: Is their function related to their localization? in: Calcium and Ion Channel Modulation, p. 19 (A. D. Grinnell, D. Armstrong, and M. B. Jackson, eds.), Plenum Press, New York.CrossRefGoogle Scholar
  7. Deitmer, J. W., Machemer, H., and Martinac, B., 1984, Motor control in three different types of ciliary organelles in the ciliate Stylonychia, J. Comp. Physiol. A 154:113.CrossRefGoogle Scholar
  8. de Peyer, J. E., and Deitmer, J. W., 1980, Divalent cations as charge carriers during two functionally different membrane currents in the ciliate Stylonychia, J. exp. Biol. 88:73.PubMedGoogle Scholar
  9. de Peyer, J. E., and Machemer, H., 1977, Membrane excitability in Stylonchia: Properties of the two-peak regenerative Ca-response, J. Comp. Physiol. 121:15.CrossRefGoogle Scholar
  10. de Peyer, J. E., and Machemer, H., 1978a, Hyperpolarizing and depolarizing mechanoreceptor potentials in Stylonychia, J. Comp. Physiol. 127:255.CrossRefGoogle Scholar
  11. de Peyer, J. E., and Machemer, H., 1978b, Are receptor-activated ciliary motor responses mediated through voltage or current? Nature 276:285.PubMedCrossRefGoogle Scholar
  12. de Peyer, J. E., and Machemer, H., 1982, Electromechanical coupling of cilia. I. Effects of depolarizing voltage steps, Cell Motil. 2:483.CrossRefGoogle Scholar
  13. Doughty, M. J., and Dryl, S., 1981, Control of ciliary activity in Paramecium. An analysis of chemosensory transduction in a eucaryotic unicellular organism, Progr. Neurobiol. 16:1.CrossRefGoogle Scholar
  14. Eckert, R., and Chad, J. E., 1984, Inactivation of Ca channels, Progr. Biophys. Mol. Biol. 44:215.CrossRefGoogle Scholar
  15. Ivens, I., 1986, Different properties of two voltage-dependent inward currents of the ciliate Stylonychia mytilus,J. Physiol. (Lond.) 381:1.Google Scholar
  16. Jennings, H. S., 1906, Behavior of the Lower Organisms, Columbia University Press, New York.CrossRefGoogle Scholar
  17. Kung, C., and Saimi, Y., 1982, The physiological basis of taxes in Paramecium, Ann. Rev. Physiol. 44:519.CrossRefGoogle Scholar
  18. Llinas, R., and Yarom, Y., 1981, Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances, J. Physiol. (Lond.) 315:549.Google Scholar
  19. Machemer, H., and Deitmer, J. W., 1987, From structure to behaviour Stylonychia as a model system for cellular physiology, Progr. Protistol. 2:213.Google Scholar
  20. Machemer, H., and de Peyer, J. E., 1977, Swimming sensory cells: Electrical membrane parameters, receptor properties and motor control in ciliated protozoa, Verh. Dtsch. Zool. Ges., Erlangen 1977:86.Google Scholar
  21. McCleskey, E. M., Fox, A. P., and Tsien, R. W., 1986, Different types of calcium channels, J. exp. Biol. 124:177.PubMedGoogle Scholar
  22. Naitoh, Y., and Eckert, R., 1969, Ionic mechanisms controlling behavioral responses in Paramecium to mechanical stimulation, Science 164:963.PubMedCrossRefGoogle Scholar
  23. Naitoh, Y., Eckert, R-, and Friedman, K., 1972, A regererative calcium response in Paramecium,J. exp. Biol. 56:667.PubMedGoogle Scholar
  24. Naitoh, Y., and Kaneko, M., 1973, Control of ciliary activities by adenosinotriphosphate and divalent cations in Triton-extracted models of Paramecium caudatum,J. exp. Biol. 58:657.Google Scholar
  25. Penner, R., and Dreyer, F., 1986, Two different presynaptic calcium currents in mouse motor nerve terminals. Pflügers Arch. 406:197.CrossRefGoogle Scholar
  26. Song, P. S., 1981, Photosensory transduction in Stentor coeruleus and related organisms, Biochem. Biophys. Acta, 639:1.CrossRefGoogle Scholar
  27. Standen, N. B., and Stanfield, P. R., 1978, A potential-and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions, J. Physiol. (Lond.) 280:169.Google Scholar
  28. Van Houten, J., Hauser, D. R., and Levandowsky, M., 1981, Chemosensory behavior in Protozoa, in: Biochemistry and Physiology of Protozoa, p. 67 (M. Levandowsky and S. H. Hutner, eds.), Academic Press, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Joachim W. Deitmer
    • 1
  1. 1.Abteilung für Allgemeine Zoologie, FB BiologieUniversität KaiserslauternKaiserslauternFederal Republic of Germany

Personalised recommendations