Ion Currents of Paramecium: Effects of Mutations and Drugs

  • Todd M. Hennessey
Chapter
Part of the NATO ASI Series book series (NSSA, volume 188)

Abstract

Paramecium is a eukaryotic, single-celled organism which is used as a simple model system for studying the regulatory mechanisms governing excitable and sensory cell functions. In terms of ion channel functions, some strategies may have been so efficient in the primative protozoans that they may remain as universal mechanisms in most sensory and excitable cells while other specialized functions may have been refined and further evolved in higher organisms, leading to diversity in the structure, function, and regulation of ion channels.

Keywords

Swimming Behavior Tail Current Ciliary Beat Frequency Channel Inactivation Dependent Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bean, B., 1989, Classes of calcium channels in vertebrate cells, Ann. Rev. Physiol. 51:367–384.CrossRefGoogle Scholar
  2. Bonini, N., Gustin, M., and Nelson, D., 1986, Regulation of ciliary motility by membrane potential in Paramecium: A role for cAMP. Cell Motil. Cytoskel. 6:256–272.CrossRefGoogle Scholar
  3. Brehm, P., Eckert, R., and Tillotson, D., 1980, Calcium-mediated inactivation of calcium currents in Paramecium. J. Physiol. (Lond.) 306:193–203.Google Scholar
  4. Byrne, B., and Byrne, B., 1978, An ultrastructural correlate of the membrane mutant “paranoiac” in Paramecium, Science 199:1091–1093.PubMedCrossRefGoogle Scholar
  5. Connoly, J., and Kerkut, G., 1983, Ion regulation and membrane potential in Tetrahymena and Paramecium, Comp. Biochem. Physiol. 76A:1–16.CrossRefGoogle Scholar
  6. Dunlap, K., 1977, Localization of calcium channels in Paramecium caudatum, J. Physiol. (Lond.) 271:119–133.Google Scholar
  7. Ehrlich, B. E., Jacobson, A. R., Hinrichsen, R., Sayre, L. M., and Forte, M. A., 1988, Paramecium calcium channels are blocked by a family of calmodulin antagonists, Proc. Natl. Acad. Sci. 85:5718–5722.PubMedCrossRefGoogle Scholar
  8. Evans, T., and Nelson, D., 1989, New mutants of Paramecium tetraurelia defective in a calcium control mechanism: Genetic and behavioral characterizations, Genetics (in press).Google Scholar
  9. Evans, T., Hennessey, T., and Nelson, D., 1987, Electrophysiological evidence suggests a defective Ca+ + control mechanism in a new Paramecium mutant, J. Membr. Biol. 98:275–283.PubMedCrossRefGoogle Scholar
  10. Forte, M., Satow, Y., Nelson, D., and Kung, C., 1981, Mutational alteration of membrane phospholipid composition and voltage-sensitive ion channel function in Paramecium, Proc. Natl. Acad. Sci. (USA) 78:7195–7199.CrossRefGoogle Scholar
  11. Forte, M., Hennessey, T., and Kung, C., 1986, Mutations resulting in resistance to polyene antibiotics decrease voltage-sensitive calcium channel activity in Paramecium, J. Neurogenet. 3:75–85.PubMedCrossRefGoogle Scholar
  12. Gustin, M., and Hennessey, T., 1988, Neomycin inhibits the calcium current of Paramecium, Biochim. Biophys. Acta 940:99–104.PubMedCrossRefGoogle Scholar
  13. Haga, N., Forte, M., Saimi, Y., and Kung, C., 1982, Microinjection of cytoplasm as a test of complementation in Paramecium, J. Cell Biol. 82:559–564.CrossRefGoogle Scholar
  14. Haga, N., Forte, M., Ramanathan, R., Hennessey, T., Takahashi, M., and Kung, C., 1984, Characterization and purification of a soluble protein controlling Ca+ +-channel activity in Paramecium, Cell 39:71–78.PubMedCrossRefGoogle Scholar
  15. Hennessey, T. M., 1989, Calcium currents of Paramecium are blocked by a non-permeant analog of W-7, Quaternary W-7, J. Cell Biol. 109:355a.Google Scholar
  16. Hennessey, T. M., and Kung, C., 1984, An anticalmodulin drug, W-7, inhibits the voltage-dependent calcium current in Paramecium caudatum, J. exp. Biol. 110:169–181.PubMedGoogle Scholar
  17. Hennessey, T. M., and Kung, C., 1985, Slow inactivation of the calcium current of Paramecium is dependent on voltage and not internal calcium, J. Physiol. (Lond.) 365:165–179.Google Scholar
  18. Hennessey, T. M., and Kung, C., 1987, A calcium-dependent potassium current is increased by a single-gene mutation in Paramecium, J. Membr. Biol. 98:145–155.PubMedCrossRefGoogle Scholar
  19. Hennessey, T., Saimi, Y., and Kung, C., 1983, A heat-induced depolarization of Paramecium and its relationship to thermal avoidance, J. Comp. Physiol. 153:39–46.CrossRefGoogle Scholar
  20. Hennessey, T., Machemer, H., and Nelson, D., 1985, Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization, Eur. J. Cell Biol. 36:153–156.PubMedGoogle Scholar
  21. Hinrichsen, R., and Saimi, Y., 1984, A mutation that alters properties of the Ca+ + channel in Paramecium tetraurelia, J. Physhl. (Lond.) 351:397–410.Google Scholar
  22. Hinrichsen, R., Saimi, Y., Hennessey, T., and Kung, C., 1984, Mutants in Paramecium tetraurelia defective in their axonemal response to calcium, Cell Motil. 4:283–295.PubMedCrossRefGoogle Scholar
  23. Hinrichsen, R., Burgess-Cassler, A., Soltvedt, B., Hennessey, T., and Kung, C., 1986, Restoration by calmodulin of a Ca++-dependent K+ current missing in a mutant of Paramecium, Science 232:503–506.PubMedCrossRefGoogle Scholar
  24. Kung, C., 1971, Genie mutations with altered system of excitation in Paramecium teraurelia: II. Mutagenesis, screening and genetic analysis of the mutations, Genetics 69:29–45.PubMedGoogle Scholar
  25. Kung, C., and Eckert, R., 1972, Genetic modifications of electric properties in an excitable membrane, Proc. Natl. Acad. Sci. (USA) 69:93–97.CrossRefGoogle Scholar
  26. Kung, C., and Naitoh, Y., 1973, Calcium-induced ciliary reversal in the extracted models of pawns, a behavioral mutant of Paramecium, Science 179:195–196.PubMedCrossRefGoogle Scholar
  27. Kung, C., Chang, S.-Y., Satow, Y., VanHouten, J., and Hansma, H., 1975, Genetic dissection of behavior in Paramecium, Science 188:898–904.PubMedGoogle Scholar
  28. Iwatsuki, K., and Naitoh, Y., 1983, Behavioral responses of Paramecium multinucleatum to visible light, Photochem. Photobiol. 37:415–419.CrossRefGoogle Scholar
  29. Lattore, R., Oberhauser, A., Labarca, P., and Alvarez, O., 1989, Varieties of calcium-activated potassium channels. Ann. Rev. Physiol. 51:385–399.CrossRefGoogle Scholar
  30. Machemer, H., 1988, Electrophysiology, in: Paramecium, pp. 186–215 (H.-D. Gortz, ed.), Springer Verlag, Berlin, Heidelberg.Google Scholar
  31. Machemer, H., 1989, Ions in modulating cellular behavior electrophysiological consideration, in: Signal Transduction in Chemotaxds (W. Stoekenius, ed.), Alan R. Liss, New York.Google Scholar
  32. Nock, A. H., Kretschar, M., Lipps and Schultz, J. E., 1982, Restoration of membrane excitability by microinjection of cytoplasmic wild-type RNA into Paramecium tetraurelia pawn C mutants. FEMS Microbiol. Lett. 13:275–277.CrossRefGoogle Scholar
  33. Oertel, D., Schein, S., and Kung, C., 1977, Separation of membrane currents using a Paramecium mutant, Nature 268:120–124.PubMedCrossRefGoogle Scholar
  34. Oertel, D., Schein, S., and Kung, C., 1978, A potassium conductance activated by hyperpolarization in Paramecium, J. Membr. Biol. 43:169–185.PubMedCrossRefGoogle Scholar
  35. Ogura, A., and Machemer, H., 1980, Distribution of mechanoreceptor channels in the Paramecium surface membrane, J. Comp. Physiol. 135:233–242.CrossRefGoogle Scholar
  36. Ramanathan, R., Saimi, Y., Peterson, J., Nelson, D., and Kung, C., 1983, Antibodies to the excitable membrane of Paramecium tetraurelia alter membrane excitability, J. Cell Biol. 97:1421–1428.PubMedCrossRefGoogle Scholar
  37. Richard, E., Saimi, Y., and Kung, C., 1986, A mutation that increases a novel calcium-activated potassium conductance of Paramecium tetraurelia, J. Membr. Biol. 91:173–181.PubMedCrossRefGoogle Scholar
  38. Saimi, Y., 1986, Calcium-dependent sodium currents in Paramecium: Manipulations and effects of hyper-and depolarization, J. Membr. Biol. 92:227–236.CrossRefGoogle Scholar
  39. Saimi, Y., and Kung, C., 1987, Behavioral genetics of Paramecium, Ann. Rev. Genet. 21:47–65.PubMedCrossRefGoogle Scholar
  40. Saimi, Y., Hinrichsen, R., Forte, M., and Kung, C., 1983, Mutant analysis shows that the Ca++-induced K+ current shuts off one type of excitation in Paramecium, Proc. Natl. Acad. Sci. (USA) 80:5112–5116.CrossRefGoogle Scholar
  41. Saimi, Y., and Kung, C., 1980, A Ca++-induced Na-current in Paramecium, J. exp. Biol. 88:305–325.PubMedGoogle Scholar
  42. Saimi, Y., Martinac, B., Gustin, M., Culbertson, M., Adler, J., and Kung, C., 1988, Ion channels of Paramecium, yeast and Escherichia coli, TIBS 13:304–309.PubMedGoogle Scholar
  43. Satir, D.H., Busch, G., Vuoso, A., and Murtaugh, T. J., 1988, Aspects of signal transduction in stimulus exocytosis-coupling in Paramecium, J. Cell. Biochem. 36:429–443.PubMedCrossRefGoogle Scholar
  44. Satow, Y., and Kung, C., 1977, A regenerative hyperpolarization in Paramecium, J. Comp. Physiol. 119:99–110.CrossRefGoogle Scholar
  45. Satow, Y., and Kung, C., 1980a, Membrane currents of the pwnA group in Paramecium teraurella, J. exp. Biol. 84:57–71.PubMedGoogle Scholar
  46. Satow, Y., and Kung, C., 1980b, Ca++-induced K+ outward current in Paramecium tetraurelia, J. exp. Biol 88:293–303.PubMedGoogle Scholar
  47. Satow, Y., and Kung, C., 1981, Possible reduction of surface charge by a mutation in Paramecium tetraurelia, J. Membr. Biol. 59:179–190.PubMedCrossRefGoogle Scholar
  48. Schaefer, W., Hinrichsen, R., Burgess-Cassler, A., Kung, C., Blair, I., and Watterson, D., 1987, A mutant Paramecium with a defective calcium dependent potassium conductance has an altered calmodulin: a nonlethal selection alteration in calmodulin regulation, Proc. Natl. Acad. Sci. (USA) 84:3931–3935.CrossRefGoogle Scholar
  49. Schein, S., 1976, Nonbehavioral selection for pawns, mutants of Paramecium aurelia with decreased excitability, Genetics 84:453–468.PubMedGoogle Scholar
  50. Shusterman, S., Theide, E., and Kung, C., 1978, K+-resistant mutants and “adaptations” in Paramecium, Proc. Natl. Acad. Sci. (USA) 75:6645–5649.CrossRefGoogle Scholar
  51. Takahashi, M., and Naitoh, Y., 1978, Behavioral mutants of Paramecium caudatum with defective membrane electrogenesis, Nature 271:656–658.PubMedCrossRefGoogle Scholar
  52. Takahashi, M., Haga, N., Hennessey, T., Hinrichsen, R., and Hara, R., 1985, A gamma-ray induced non-excitable membrane mutant in Paramecium caudatum: A behavioral and genetic analysis, Genet. Res. 46:1–10.PubMedCrossRefGoogle Scholar
  53. Van Houten, J., and Preston, R., 1988, Chemokinesis in Paramecium, in: Paramecium (H.D. Gortz, ed.), Springer Verlag.Google Scholar
  54. Weglar, D., Howe-McDonald, S., and Hennessey, T., 1989, The inward calcium current is increased by sterol supplementation in Paramecium, Comp. Biochem. Physiol. 94A:25–32.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Todd M. Hennessey
    • 1
  1. 1.Department of Biological SciencesState University of New York at BuffaloBuffaloUSA

Personalised recommendations