Two Pathways of Evolution of Neurotransmitters-Modulators

  • C. Ladd Prosser
Part of the NATO ASI Series book series (NSSA, volume 188)


Nature provides many examples of parallel and convergent evolution. For example, two large categories of contractile proteins have evolved in parallel - myosins and tubulins. My thesis is that there have been two parallel pathways of evolution of neurotransmitters and neuromodulators: (1) Amino acids and amines which are formed by simple reactions from amino acids, phospholipid bases and nucleotides; (2) Neuropeptides, which are encoded as long precursors that are later cleaved and may be converted further, post-translationally. In some cells, the two types of neuro-agents co-exist.


Biogenic Amine Parallel Pathway Transmitter Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, J., 1975, Chemotaxes in bacteria, Ann. Rev. Biochem. 44:341–356.PubMedCrossRefGoogle Scholar
  2. Andries, J. C., Belemtougri, G., Croix, D., and Tramu, G., 1989, Gastrin-CCK like immunoreactivity in nervous system of Alschna (Odonata), Cell Tissue Res. 257:105–113.CrossRefGoogle Scholar
  3. Betz, R., 1979, a-Factor arrests division of opposite mating types in yeast, Europ. J. Bioch. 95:469–475.CrossRefGoogle Scholar
  4. Burnstock, G., 1981, Neurotransmitters and trophic factors in the autonomic nervous system, J. Physiol. (Lond.) 313:1–35.Google Scholar
  5. Di Paoloa, M., Czajakowski, C. and Karlin, A., 1989, The sidedness of the COOH terminus of the acetylcholine receptor subunit, J. Biol. Chem. 264:15457–15463.Google Scholar
  6. Dixon, R., Kobilka, B., Strader, D., Benovic, J., Dohlman, H., Frielle, T., Bolanowski, M., Bennett, C., Rando, E., Diehl, R., Mumford, R., Slater, E., Sigal, F., Caron, M., Lefkowitz, R., and Strader, X. C., 1986, Cloning of gene and cDNA for mammalian ß-adrenergic receptor and homology with rhodopsin, Nature 321:75–79.PubMedCrossRefGoogle Scholar
  7. Erspamer, V., and Melchiorri, P., 1980, Tachykinins in frog skin, Trends in Pharmacol. Sci. 1:391–395.CrossRefGoogle Scholar
  8. Erspanmer, V., Melchiorri, P., Falconieric-Ersrpamer, G., Negri, L., Corsi, R., Severine, C., Barra, D., Simmaco, M., and Kobil, G., 1989, Deltorphins-A family of naturally occuring peptides with high affinity and selectivity for δ opioid binding sites, Proc. Nat. Acad. Sci. USA 86:5188–51921.CrossRefGoogle Scholar
  9. Fisher, J., and Scheller, R., 1988, Prohormone processing and the secretory pathway, Jour. Biol. Chem. 263:16515–16518.Google Scholar
  10. Greenberg, M., 1970, A comparison of acetylcholine structure-activity relations on the hearts of bivalve molluscs, Comp. Bioch. Phys. 33:259–294.CrossRefGoogle Scholar
  11. Greenberg, M. J., and Price, D., 1988, The phylogenetic and biomedical significance of extended neuropeptide families, in: Biomedical Importance of Marine Organisms (Fautin, D. G., Fenical, W. and Kern, W. R. eds.) Mem. Cal. Acad. Sci.: 85-96.Google Scholar
  12. Greenberg, M. J., Payza, K., Nachman, R., Holman, G., and Price, D., 1988, Relationships between FMRF amide-related peptides and other peptide families, Peptides 9:125–135.PubMedCrossRefGoogle Scholar
  13. Grimmelikhuijzen, C. J., Graff, G., and Spencer, A. N., 1988, Stucture, location and possible actions of Arg-Phe-amide peptides in coelenterates, in: Neurohormones in Invertebrates, pp. 199-217 (M. T. Thorndyke and G. Goldsworthy, eds.), Cambridge Univ. Press.Google Scholar
  14. Gubler, U., Seeburg, P., Hoffman, B., Gage, P., and Udenfriend, S., 1982, Molecular cloning establishes proenkephalon as precursory enkephalin-containing peptides, Nature 295:206–208.PubMedCrossRefGoogle Scholar
  15. Hall, Z. W., 1987, Three of a kind; adrenergic receptor, muscarinic receptor and rhodopsin, Trends in Neuroscience 10:99–101.CrossRefGoogle Scholar
  16. Huxtable, R. J., 1982, Taurine in Nutrition and Neurology, Plenum Press, New York.CrossRefGoogle Scholar
  17. Kobayashi, M., and Muneoka, Y., 1986, Structural requirements for FMRFamide-like activity on heart of prosobranch Rapana thomasiana, Comp. Bioch. Phys. 84C:349–352.Google Scholar
  18. Krause, R. M., Chirgivin, J. M., Carter, M., Xu Z., and Hershey, A., 1987, Preprotachykinin mRNAs, substance P and neurokinin (SK), Proc. Nat. Acad. Sci. USA 84:881–885.PubMedCrossRefGoogle Scholar
  19. Kravitz, E. A., 1986, Serotonin, octopamine and proctolin; two amines and a peptide, aspects of lobster behavior, in: Fast and Slow Chemical Signalling in the Nervous System, pp. 244-259 (L. Iverson and F. Goodman, eds.), Oxford Univ. Press.Google Scholar
  20. Landis, S. C., and O’Keefe, D., 1983, Evidence for neurotransmitter plasticity in vivo, Developmental Biology 98:349–372.PubMedCrossRefGoogle Scholar
  21. Lenhoff, H., 1976, Chemical stimulation of feeding reactions in Hydra, in: Coelenterate Ecology and Behavior, pp. 571–579 (G. O. Mackie, ed.), Plenum Press, New York.CrossRefGoogle Scholar
  22. Lloyd, P. E., 1984, Evidence for parallel actions of a molluscan neuropeptide and serotonin in mediating arousal in Aptysia, Proc. Nad. Acad. Sci. USA 81:2434–2937.CrossRefGoogle Scholar
  23. Lloyd, D., 1986, Small cardiac peptides of Aptysia, Proc. Nad. Acad. Sci. USA 83:9794–9798.CrossRefGoogle Scholar
  24. Loh, Y., and Gainer, H., 1983, Biosynthesis and processing of brain peptides, in: Brain Peptides, pp. 79-116 (D. Krieger et al., eds.), Wiley.Google Scholar
  25. Maggio, J.E., 1988, Tachykinins, Ann. Rev. Neurosci. 11:13–28.PubMedCrossRefGoogle Scholar
  26. Mahon, A., Lloyd, P. et al., 1985, Small cardioactive peptides A and B of Aptysia are derived from common precursor molecule, Proc. Nat. Acad. Sci. USA 82:3925–3929.PubMedCrossRefGoogle Scholar
  27. Margolis, S. L., 1980, Carnosine: An olfactory neuropeptide, in: Role of Peptides in Neuronal Function, pp. 545-572 (J. L Baker and T. Smith, eds.), Dekker.Google Scholar
  28. Masu, Y. K., Nakayama, H., Amaki, T., Harada, Y., Kuno, M., and Nakanishi, S., 1987, DNA cloning of bovine substance-K receptor through oocyte expression system, Nature 329:836–838.PubMedCrossRefGoogle Scholar
  29. McGeer, P. L., and McGeer, E. G., 1989, Amino acid transmitters, in: Basic Neurochemistry, Molecular and Cellular Aspects, 4th edition, pp. 311–332 (G. J. Siegel, ed.), Raven Press, New York.Google Scholar
  30. Miyaki, M., North, A., and Christie, M., 1989, Single potassium channel opened by opioids in rat locus coeruleus, Proc. Nad. Acad. Sci. USA 86:3419–3422.CrossRefGoogle Scholar
  31. Morris, H. R., Pancio, M., Kaplus, A., Lloyd, P., and Riniker, B., 1982, Elucidation by FAB-MS of structure near cardioactive peptide from Aptysia, Nature 300:643–645.PubMedCrossRefGoogle Scholar
  32. Nagle, G., Painter, S., Blankenship, J., and Kurosky, A., 1988, Proteolytic processing of egg-laying hormone-related precursor in Aptysia, J. Biol. Chem. 263:9223–9237.PubMedGoogle Scholar
  33. Nakanishi, S., Inoue, A., Kita, T., Nakamura, M., Chang, S., Cohen, S., and Numa, S., 1979, Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor, Nature 278:423–427.PubMedCrossRefGoogle Scholar
  34. Netherton, J., and Gurin, S., 1982, Biosynthesis and physiological role of homarine in marine shrimp, J. Biol. Chem. 257:11971–11975.PubMedGoogle Scholar
  35. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Hirose, T., Inayama, S., Nakanish, S., and Numa, S., 1982, Qoning and sequence analysis of cDNA for bovine adrenal preproenkephalin, Nature 295:202–208.PubMedCrossRefGoogle Scholar
  36. Noda, M., Takashi, H., Tanube, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T., and Numa, S., 1983, Structural homology of Torpedo californica acetycholine receptor subunits, Nature 302:528–537.PubMedCrossRefGoogle Scholar
  37. O’Shea, M., and Schaffer, M., 1985, Neuropeptide function. The invertebrate contribution, Ann. Rev. Neurosci. 8:171–198.PubMedCrossRefGoogle Scholar
  38. Potter, D. D., Furshpan, E. J., and Landis, S. C., 1983, Transmitter status in cultured sympathetic neurons, Feder. Proc. 42:1628–1634.Google Scholar
  39. Price, D., Davies, N., Doble, K., and Greenberg, M., 1987, Variety and distribution of the FMRFamide-related peptides in molluscs, Zool. Sci. 4:395–410.Google Scholar
  40. Randall, L., Hardy, S. J., and Thorn, J., 1987, Export of protein: a biochemical view, Ann. Rev. Microbiol. 41:507–541.CrossRefGoogle Scholar
  41. Rehfield, J. F., 1981, Four basic characteristics of the gastrin-cholecystokinin system, Amer. Jour. Physiol. 240:G255–G266.Google Scholar
  42. Siegelbaum, S. A., et al., 1982, Serotonin and cAMP close K+ channels in Aptysia sensory neurons, Nature 299:413–417.PubMedCrossRefGoogle Scholar
  43. Spencer, A. N., 1988, Effect of Arg-Phe amide peptides on identified motor neurons in the hydromedusa Polyorchis penicillatus, Canad. J. Zool. 66:639–645.CrossRefGoogle Scholar
  44. Stotzler, D., 1976, Sequences of mating factors in yeast, Europ. J. Bioch. 69:397–400.CrossRefGoogle Scholar
  45. Stuart, D., Chiu, A., and Strumwasser, F., 1980, Neurosecretion of egg-laying hormone and other peptides from electrically active bag cell neurons of Aptysia, J. Neurophysiol. 43:488–498.PubMedGoogle Scholar
  46. Taussig, R., Nambu, J. R., and Scheller, R. H., 1988, in: Neurohormones in Invertebrates, pp. 299-309 (M. Thomdyke and G. Goldsworthy, eds.), Cambridge Univ. Press.Google Scholar
  47. Valentino, K. L., Eberwine, J. H., and Barchas, J. (eds.), 1987, In situ Hybridization: Applications to Neurobiology, Oxford Univ. Press, New York.Google Scholar
  48. Whiteway, M., Hougan, L., Diegnard, D., Thomas, D., Bell, L., Saari G., Grant, F., O’Hara, P., MacKay, V., 1989, STE 4 and STE 18 genes of yeast encode β and subunits of mating factor receptor coupled G proteins, D. Cell 56:467–477.CrossRefGoogle Scholar
  49. Yanagawa, M., and Kobayashi, M., 1988, Potentiating effects of some invertebrate neuropeptides on twitch contraction of the radula muscles of a mollusc Rapana thomasiana, Comp. Bloch, Phys. 90C:73–77.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • C. Ladd Prosser
    • 1
  1. 1.Department of Physiology and BiophysicsUniversity of IllinoisUrbanaUSA

Personalised recommendations