Rethinking the Role of Cholinergic Neurotransmission in the Cnidaria

  • Eliana Scemes
Part of the NATO ASI Series book series (NSSA, volume 188)


After Otto Loewi’s confirmation of the concept of chemical synaptic transmission, a major emphasis in the field of comparative physiology of neuromuscular systems concerned the question of which invertebrates employ adrenergic or cholinergic transmission. This problem was of particular interest to zoologists attempting to establish phylogenetic relationships among invertebrates. Thus, Bacq and Pantin began a series of studies around 1935 to verify the presence of adrenaline, acetylcholine (ACh) and cholinesterase in invertebrates ranging from the Coelenterata to the Tunicata. Following their finding of a widespread sensitivity of animals to the application of ACh, adrenaline and related substances, these authors proposed that chemical transmission occcurred in most animals, but that the problem of neurotransmission in the coelenterates had been solved by employing chemical mechanisms other than those described for the vertebrate neuromuscular junction.


Cholinesterase Activity Cholinergic Transmission Cholinergic Neurotransmission Cholinergic Mechanism Nicotinic Agonist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, P. A. V., 1985, Physiology of a bidirectional, excitatory chemical synapse, J. Newophysiol. 53:821–835.Google Scholar
  2. Anctil, M., Boulay, D., and Lariviere, L., 1982, Monoaminergic mechanisms associated with control of luminescence and contractile activities in the coelenterate, Renilla köllikeri, J. exp. Biol. 223:11–24.Google Scholar
  3. Bacq, Z. M., 1935, Recherches sur la physiologie et la pharmacologie du système nerveux autonome. XVII. Les esters de la choline dans les extraits de tissue des invertébrés, Arch. Int Physiol. 42:24–46.Google Scholar
  4. Bacq, Z. M., 1937, Nouvelles observations sur l’acétylcholine et la choline-estérase chez les invertébrés, Arch. Int. Physiol. 44:174–189.CrossRefGoogle Scholar
  5. Bacq, Z. M., 1946, L’acétylcholine et l’adrénaline chez les invertébrés, Biol. Rev. 22:73–91.CrossRefGoogle Scholar
  6. Bacq, Z. M., and Nachmansohn, D., 1937, Cholinestérase in invertebrate muscles, J. Physiol. (Lond.) 89:368–371.Google Scholar
  7. Bullock, T. H., and Nachmansohn, D., 1942, Choline estérase in primitive nervous systems, J. Cell. Comp. Physiol. 20:239–242.CrossRefGoogle Scholar
  8. Ewer, D. W., 1960, Inhibition and rhythmic activity of the circular muscles of Calliactis parasitica (Couch), J. exp. Biol. 37:812–831.Google Scholar
  9. Erzen, I., and Brzin, M., 1978, Cholinergic mechanisms in Hydra, Comp. Biochem. Physiol. 59C:39–43.Google Scholar
  10. Horridge, G. A., 1959, The nerves and muscles of medusae. VI. The rhythm, J. exp. Biol. 36:72–91.Google Scholar
  11. Hyman, L. H., 1940, Observation and experiments on the physiology of medusae, Biol. Bull. 79:282–296.CrossRefGoogle Scholar
  12. Kass-Simon, G., and Passano, L. M., 1978, A neuropharmacological analysis of the pacemakers and conducting tissue of Hydra attenuate, J. Comp. Physiol. 128:71–79.CrossRefGoogle Scholar
  13. Lawn, I. D., and McFarlane, I. D., 1976, Control of shell settling in the swimming sea anemone Stomphia coccinea, J. exp. Biol. 64:419–429.PubMedGoogle Scholar
  14. Lentz, T. L., and Barrnett, R. J., 1962, Enzyme histochemistry of Hydra, J. exp. Zool. 147:125–149.CrossRefGoogle Scholar
  15. Lentz, T. L., and Barrnett, R. J., 1963, The role of nervous system in regenerating Hydra. The effect of neuropharmacological agents, J. exp. Biol. 154:305–327.Google Scholar
  16. Lindmar, R. R., Loffelholz, K., and Muscholl, E., 1968, A muscarinic mechanism inhibiting the release of noradrenaline from peripheral adrenergic nerve fibres by nicotinic agents, Br. J. Pharmac. Chemother. 32:280–294.CrossRefGoogle Scholar
  17. Mackie, G.O., 1975, Neurobiology of Stomotoca. II. Pacemakers and conduction pathways, J. Neurobiol. 6:357–378.PubMedCrossRefGoogle Scholar
  18. Mackie, G. O., and Singla, C. L., 1975, Neurobiology of Stomotoca. I. Action systems, J. Neurobiol. 6:339–356.PubMedCrossRefGoogle Scholar
  19. McFarlane, I. D., 1976, Two slow conducting systems coordinate shell-climbing behaviour in the sea anemone Calliactis parasitica, J. exp. Biol. 64:431–446.PubMedGoogle Scholar
  20. McFarlane, I. D., 1982, Calliactis parasitica, in: Electrical Conduction and Behaviour in “Simple” Invertebratespp. 243–265 (G. A. B. Shelton, ed.), Clarendon Press, Oxford.Google Scholar
  21. Mendes, E. G., 1976, Chemical mediation in Coelenterata, An. Acad. Bras. Cienc. 47(supl.):101–104.PubMedGoogle Scholar
  22. Mendes, E. G., and Freitas, J. C., 1984, The responses of isolated preparations of Bunodosoma caissarum (Cora, 1964) (Cnidaia, Anthozoa) to drugs, Comp. Biochem. Physiol. 79C:375–382.Google Scholar
  23. Moore, A. R., 1917, Proc. Nat. Acad. Sci. 3:598. Appud ROSS, D.M. 1946.Google Scholar
  24. Pantin, C. F. A., 1935, Responses of the leech to acetylcholine, Nature 135:875.CrossRefGoogle Scholar
  25. Przisiezniak, J., and Spencer, A. N., 1989, Primary culture of identified neurons from a cnidarian, J. exp. Biol. 142:97–113.Google Scholar
  26. Robson, E. A., 1961, A comparision of the nervous systems of two sea anemones, Calliactis parasitica and Metridium senile, Q. J. microsc. Sci. 102:319–326.Google Scholar
  27. Robson, E. A. 1963, The nerve-net of a swimming anemone, Stomphia coccinea, Q. J. microsc. Sci. 104:535–549.Google Scholar
  28. Robson, E. A., 1965, Some aspects of the structure of nervous system in the anemone Calliactis, Am. Zool. 5:403–410.PubMedGoogle Scholar
  29. Romanes, G. J., 1885, Jelly-fish, Star-fish and Sea-urchins, Being a Research on Primitive Nervous Systems, Appleton, New York.CrossRefGoogle Scholar
  30. Ross, D. M., 1946, Facilitation in sea anemones. I. The action of drugs, J. exp. Biol. 22:21–31.Google Scholar
  31. Ross, D. M. 1960a, The effects of ions and drugs on neuromuscular preparations of sea anemones. I. On preparations of the column of Calliactis and Metridium, J. exp. Biol. 37:732–752.Google Scholar
  32. Ross, D. M., 1960b, The effects of ions and drugs on neuromuscular preparations of sea anemones. II. On sphincter preparations of Calliactis and Metridium, J. exp. Biol. 37:753–774.Google Scholar
  33. Scemes, E., and Freitas, J. C., 1989, Electrophysiology of the swimming system of hydromedusae and the effects of atropine-induced crumpling, Braz. J. Med. Biol. Res. 22:189–198.PubMedGoogle Scholar
  34. Scemes, E., and Jurkiewicz, A., 1984, O efeito de agonistas e antagonistas colinérgicos sobre a contractilidade de tiras de parede do corpo da anêmona do mar Bunodosoma caissarum, in: Resumos do II Congresso Brasileiro de Farmacologia e Terapeptica Experimental, p. 264.Google Scholar
  35. Scemes, E., and McNamara, J. C., 1989, Ultrastructure of the radial neuromuscular system of Liriope tetraphylla (Trachymedusae), in: 5th International Conference on Coelenterate Biology.Google Scholar
  36. Scemes, E., and Mendes, E. G., 1986, Cholinergic mechanism in Lriope tetraphylla (Cnidaria, Hydrozoa), Comp. Biochem. Physiol. 83C:171–178.Google Scholar
  37. Scemes, E., and Mendes, E. G., 1988, Pharmacology of the radial neuromuscular system of Liriope tetraphylla (Hydrozoa, Trachymedusae), Comp. Biochem. Physiol. 90C:385–389.Google Scholar
  38. Scemes, E., Mendes, E. G., and Chaimovich, H., 1982, Absence of Cholinestérase activity in the body wall homogenates from the sea anemone Bunodosoma caissarum Correa, Comp. Biochem. Physiol. 73C:415–418.Google Scholar
  39. Singer, R. H., 1964, The effect of neuropharmacological drugs on the light response of Hydra piradi, Anat. Rec. 148:402–403.Google Scholar
  40. Westfall, T. C., and Brasted, M., 1972, The mechanism of action of nicotine on adrenergic neurons in the perfused guinea-pig heart, J. Pharmac. exp. Ther. 182:409–418.Google Scholar
  41. Winkler, L. R., and Tilton, B. E., 1962, Prédation on the sea hare, Aplysia californica, by the great green sea anemone, Anthopleura xanthogrammica (Brandt), and the effect of sea hare toxin and acetylcholine on anemone muscle, Pacific Sci. 16:286–290.Google Scholar
  42. Van Marie, J., 1977, Contribution to the knowledge of the nervous system in the tentacle of some coelenterates, Bijd. Dierk. 46:219–260.Google Scholar
  43. Yoshida, M., 1959, Effect of acetylcholine and eserine on spawing on Hydractina echinata, Nature 184:1151.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Eliana Scemes
    • 1
  1. 1.Departamento de Fisiologia Geral, Instituto de BiociênciasUniversidade de São PauloBrasil

Personalised recommendations