Skip to main content

The Antiquity of Monoaminergic Neurotransmitters: Evidence from Cnidaria

  • Chapter
Evolution of the First Nervous Systems

Part of the book series: NATO ASI Series ((NSSA,volume 188))

Abstract

When wrestling with the issue of the origin of nervous systems and their associated messenger molecules, conventional wisdom has historically dictated that one should look at coelenterates for experimental models (Robson, 1975; Anderson and Schwab, 1982). However, recent molecular approaches to constructing phytogenies suggest that Cnidaria evolved from a protist ancestor, along a line separate from that leading to other multicellular animals (Field et al., 1988). Regardless of the eventual “pedigree” of ancestral Cnidaria that may emerge from these analyses, it is still reasonable to view their nervous system as the most ancient, having evolved some 600 to 700 million years ago. The search for monoamine transmitters and their mechanisms of action in Cnidaria should be envisaged with that perspective in mind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anctil, M., 1987, Bioacthdty of FMRFamide and related peptides on a contractile system of the coelenterate Renilla köllikeri, J. Comp. Physiol. 157:31–38.

    CAS  Google Scholar 

  • Anctil, M., 1989, Modulation of a rhythmic activity by serotonin via cyclic AMP in the coelenterate Renilla köllikeri, J. Comp. Physiol., in press.

    Google Scholar 

  • Anctil, M., and Grimmelikhuijzen, C. J. P., 1989, Excitatory action of the native neuropeptide antho-RFamide on muscles in the pennatulid Renilla köllikeri, Gen. Pharmac. 20:381–384.

    Article  CAS  Google Scholar 

  • Anctil, M., Boulay, D., and LaRiviere, L., 1982, Monoaminergic mechanisms associated with control of luminescence and contractile activities in the coelenterate, Renilla köllikeri, J. Exp. Zool. 223:11–24.

    Article  CAS  Google Scholar 

  • Anctil, M., Germain, G., and LaRiviere, L., 1984, Catecholamines in the coelenterate Renilla köllikeri. Uptake and radioautographic localization, Cell. Tiss. Res. 238:69–80.

    CAS  Google Scholar 

  • Anderson, P. A. V., and Case, J. F., 1975, Electrical activity associated with bioluminescence and other colonial behavior in the pennatulid Renilla köllikeri, Biol. Bull. 149:80–95.

    Article  Google Scholar 

  • Anderson, P. A. V., and Schwab, W. E., 1982, Recent advances and model systems in coelenterate neurobiology, Progr. Neurobiol. 19:213–236.

    Article  CAS  Google Scholar 

  • Brizzi, G., and Blum, J. J., 1970, Effect of growth conditions on serotonin content of Tetrahymena pyriformis, J. Protozool. 17:553–555.

    PubMed  CAS  Google Scholar 

  • Carlberg, M., 1983, Evidence of dopa in the nerves of sea anemones, J. Neural Transmission 57:75–84.

    Article  CAS  Google Scholar 

  • Carlberg, M., 1988, Localization and identification of catechol compounds in the ctenophore Mnemiopsis leidyi, Comp. Biochem. Physiol. 91C:69–74.

    CAS  Google Scholar 

  • Carlberg, M., and Rosengren, E., 1985, Biochemical basis for adrenergic neurotransmission in coelenterates, J. Comp. Physiol. B155:251–255.

    Google Scholar 

  • Chung, J. M., Spencer, A. N., Gahm, K. H., 1989, Dopamine in tissues of the hydrozoan jellyfish Polyorchis pennicilatus as revealed by HPLC and GC/MS. J. Comp. Physiol. B. 159:173–181.

    Article  CAS  Google Scholar 

  • Dahl, E., Falck, B., von Mecklengurg, C., and Myhrberg, H., 1963, An adrenergic nervous system in sea anemones, Quart. J. Micr. Sci. 104:531–534.

    Google Scholar 

  • Dahlstrom, A., and Carlsson, A., 1986, Making visible the invisible, in: Discoveries in Pharmacology, Vol. 3: Pharmacological Methods, Receptors and Chemotherapy, pp. 97–125, (M. J. Parnham and J. Bruinvels, eds.), Elsevier, Amsterdam.

    Google Scholar 

  • David, C. N., 1983, Stem cell proliferation and differentiation in hydra, in: Stem Cells, their Identification and Characterization, pp. 12–27 (C. S. Potten, ed.), Churchill-Livingstone, Edinburgh-London.

    Google Scholar 

  • De Waele, J.-P., Anctil, M., and Carlberg, M., 1987, Biogenic catecholamines in the cnidarian Renilla köllikeri: radioenzymatic and chromatographic detection, Can. J. Zool. 65:2458–2465.

    Article  Google Scholar 

  • Edwards, N. C., Thomas, M. B., Long. B. A., and Amyotte, S. J., 1987, Catecholamines induce metamorphosis in the hydrozoan Halocordyle disticha but not in Hydractinia echinata, Rouxs Arch. Dev. Biol. 196:381–384.

    Article  CAS  Google Scholar 

  • Elofsson, R., and Carlberg, M., 1989, Gland cells in the tentacles of the jellyfish Cyanea lamarcki reactive with an antibody against 5-hydroxytryptamine, Cell Tiss. Res. 255:419–422.

    Google Scholar 

  • Elofsson, R., Falck, B., Lindvall, O., and Myhrberg, H., 1977, Evidence for new catecholamines or related amino acids in some invertebrate sensory neurons, Cell. Tiss. Res. 182:25–536.

    Google Scholar 

  • Falck, B., Hillarp, N. A., Thieme, G., and Thorp, A., 1962, Fluorescence of catecholamines and related compounds condensed with formaldehyde, J. Histochem. Cytochem. 10:348–354.

    Article  CAS  Google Scholar 

  • Field, K. G., Olsen, G. J., Lane, D. J., Giovannoni, S. J., Ghiselin, M. T., Raff, E. C., Pace, N. R., Raff, R. A., 1988, Molecular phytogeny of the animal kingdom, Science 239:748–753.

    Article  PubMed  CAS  Google Scholar 

  • Geffard, M., Kan, O., Onteniente, B., Seguela, P., Le Moal, M., and Delaage, M., 1984, Antibodies to dopamine: radioimmunological study of specificity in relation to immunocytochemistry, J. Neurochem. 42:1593–1599.

    Article  PubMed  CAS  Google Scholar 

  • Germain, G., Anctil, M., 1988, Luminescent activity and ultrastructural characterization of photocytes dissociated from the coelenterate Renilla köllikeri, Tissue and Cell 20:701–720.

    Article  PubMed  CAS  Google Scholar 

  • Grimmelikhuijzen, C. J. P., Dockray, G. J., and Schot, L. P. C., 1982, FMRFamide-like immunoreactivity in the nervous system of hydra, Histochemistry 73:499–508.

    Article  PubMed  CAS  Google Scholar 

  • Hamon, M., Gozlan, H., El Mestikawi, S., Emerit, M. B., Cossery, J. M., and Lutz, O., 1988, Biochemical properties of central serotonin receptors, in: Neuronal Serotonin, pp. 393–422 (N. N. Osborne and M. Hamon, eds.), John Wiley & Sons, New York, London.

    Google Scholar 

  • Hanai, K., and Kitajima, M., 1984, Two types of surface amine receptors modulating the feeding response in Hydra japonica: the depressing action of dopamine and related amines, Chem. Senses 9:355–367.

    Article  CAS  Google Scholar 

  • Hille, B., 1984, Ionic Channels of Excitable Membranes, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Janakidevi, K., Dewey, V. C., and Kidder, G. W., 1966a, The biosynthesis of catecholamines in two genera of Protozoa, J. Biol. Chem. 241:2576–2578.

    PubMed  CAS  Google Scholar 

  • Janakidevi, K., Tewey, V. C., and Kidder, G. W., 1966b, Serotonin in Protozoa, Arch. Biochem. Biophys. 113:758–759.

    Article  PubMed  CAS  Google Scholar 

  • Juorio, A. V., and Killick, S. W., 1973, The distribution of monoamines and some of their acid metabolites in the posterior salivary glands and viscera of some cephalopods, Comp. Biochem. Physiol. 44A:1059–1067.

    Article  Google Scholar 

  • Klemm, N., 1985, The distribution of biogenic monoamines in invertebrates, in: Neurobiology. Current Comparative Approaches, pp. 280–296 (R. Gilles and J. Balthazart, eds.), Springer-Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Lesh-Laurie, G. E., 1988, Coelenterate endocrinology, in: Invertebrate Endocrinology, Vol. 2: Endocrinology of Selected Invertebrate Types, pp. 3–29 (H. Laufer and R. G. H. Downer, eds.), Alan R. Liss, New York.

    Google Scholar 

  • Mackie, G. O., 1984, Introduction to the diploblastic level, in: Biology of the Integument, Vol. 1: Invertebrates, pp. 43–46 (J. Bereiter-Hahn, A. G. Matoltsy and K. S. Richards, eds.), Springer-Verlag, Heidelberg.

    Chapter  Google Scholar 

  • Martin, S. M., and Spencer, A. N., 1983, Neurotransmitters in coelenterates, Comp. Biochem. Physiol. 74C:1–14.

    CAS  Google Scholar 

  • Matus, A. I., 1971, Histochemical localization of biogenic amines in the posterior salivary glands of octopods, Tissue and Cell 3:389–394.

    Article  PubMed  CAS  Google Scholar 

  • Ness, J. C., and Morse, D. E., 1985a, Regulation of galactokinase gene expression in Tetrahymena thermophila. I. Intracellular catecholamine control of galactokinase expression, J. Biol. Chem. 260:10001–10012.

    PubMed  CAS  Google Scholar 

  • Ness, J. C., and Morse, D. E., 1985b, Regulation of galactokinase gene expression in Tetrahymena thermophila. II. Identification of 3,4-dihydroxyphenylalanine as a primary effector of adrenergic control of galactokinase expression, J. Biol. Chem. 260:10013–10018.

    PubMed  CAS  Google Scholar 

  • Osborne, N. N., Hiripi, L., and Neuhoff, V., 1975, The in vitro uptake of biogenic amines by snail (Helix pomatia) nervous tissue, Biochem. Pharmacol. 24:2141–2148.

    Article  PubMed  CAS  Google Scholar 

  • Paton, D. M., 1976, Characteristics of uptake of noradrenaline by adrenergic neurons, in: The Mechanism of Neuronal and Extraneuronal Transport of Catecholamines, pp. 49–66 (D. M. Paton, ed.), Raven Press, New York.

    Google Scholar 

  • Pazos, A., Engel, G., and Palacios, J. M., 1985, Beta-adrenoceptor blocking agents recognize a subpopulation of serotonin receptors in brain, Brain Res. 343:403–408.

    Article  PubMed  CAS  Google Scholar 

  • Reuter, M., Wikgren, M., and Lehtonen, M., 1986, Immunocytochemical demonstration of 5-HT-like and FMRFamide-like substances in whole mounts of Microstomum lineare (Turbellaria), Cell. Tiss. Res. 246:7–12.

    CAS  Google Scholar 

  • Robson, E. A., 1975, The nervous system of coelenterates, in: Simple Nervous Systems, pp. 169–209 (P. N. R. Usherwood and D. R. Newth, ed.), Edward Arnold, London.

    Google Scholar 

  • Rosenzweig, K., and Kindler, S. H., 1972, Epinephrine and serotonin activation of adenylate cyclase from Tetrahymena pyriformis, FEBS Lett. 25:221–223.

    Article  Google Scholar 

  • Ross, D. M., 1960a, The effects of ions and drugs on neuromuscular preparations of sea anemones. I. On preparations of the column of Calliactis and Metridium, J. exp. Biol. 37:732–752.

    CAS  Google Scholar 

  • Ross, D. M., 1960b, The effects of ions and drugs on neuromuscular preparations of sea anemones. II. On sphincter preparations of Calliactis and Metridium, J. exp. Biol. 37:753–774.

    CAS  Google Scholar 

  • Satterlie, R. A., Anderson, P. A. V., and Case, J. F., 1980, Colonial coordination in anthozoans: Pennatulacea, Mar. Behav. Physiol. 7:25–46.

    Article  Google Scholar 

  • Soghomonian, J.-J., Beaudet, A., and Descarries, L., 1988, Ultrastructural relationships of central serotonin neurons, in: Neuronal Serotonin, pp. 57–92 (N. N. Osborne and M. Hamon, ed.), John Wiley & Sons, New York, London.

    Google Scholar 

  • Sukhdeo, S. C., and Sukhdeo, M. V. K., 1988, Immunohistochemical and electrochemical detection of serotonin in the nervous system of Fasciola hepatica, a parasitic flatworm, Brain Res. 463:57–62.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y., 1988, Distribution of serotonin neurons in the mammalian brain, in: Neuronal Serotonin, pp. 25–56 (N. N. Osborne and M. Hamon, eds.), John Wiley & Sons, New York, London.

    Google Scholar 

  • Umbriaco, D., Anctil, M., and Descarries, L., 1989, Serotonin-immunoreactive neurons in the cnidarian Renilla köllikeri, J. Comp. Neurol, in press.

    Google Scholar 

  • Umbriaco, D., and Anctil, M., 1988, Immunohistochemical evidence of catecholaminergic cells in the coelenterate Renilla köllikeri, Bull. Can. Soc. Zool. 19(2):23.

    Google Scholar 

  • Vaughan, P. F. T., 1988, Amine transmitters and their associated second messenger systems, in: Comparative Invertebrate Neurochemistry, pp. 124–174 (G. G. Lunt and R. W. Olsen, ed.), Cornell Univ. Press, Ithaca.

    Chapter  Google Scholar 

  • Venturini, G., Silei, O., Palladini, G., Carolei, A., and Margotta, V., 1984, Aminergic neurotransmitters and adenylate cyclase in Hydra, Comp. Biochem. Physiol. 78C:345–348.

    CAS  Google Scholar 

  • Verhofstad, A. A. J., Steinbusch, H. W. M., Joosten, H. W. J., Penke, B., Varga, J., and Goldstein, M., 1983, Immunocytochemical localization of noradrenaline, adrenaline and serotonin, in: Immunohistochemistry. Practical Applications in Pathology and Biology, pp. 143–168 (J. M. Polak and S. Van Noorden, eds.), Wright PBS, Bristol-London.

    Google Scholar 

  • Walker, R. J., 1984, 5-Hydroxytryptamine in invertebrates, Comp. Biochem. Physiol. 79C:231–235.

    CAS  Google Scholar 

  • Webb, R. A., Mizukawa, K., 1985, Serotonin-like immunoreactivity in the cestode Hymenolepis diminuta, J. Comp. Neurol 234:431–440.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, E. B., 1883, The development of Renilla, Phil Trans. R. Soc. Lond., B174:723–815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anctil, M. (1989). The Antiquity of Monoaminergic Neurotransmitters: Evidence from Cnidaria. In: Anderson, P.A.V. (eds) Evolution of the First Nervous Systems. NATO ASI Series, vol 188. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0921-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0921-3_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0923-7

  • Online ISBN: 978-1-4899-0921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics