Advertisement

Number Theoretic Transformation Techniques

  • Robert King
  • Majid Ahmadi
  • Raouf Gorgui-Naguib
  • Alan Kwabwe
  • Mahmood Azimi-Sadjadi

Abstract

Processing signals with a digital computer or with dedicated digital hardware involves the implementation of computational schemes on sequences of numbers. Practically, it is not possible to process an infinitely long sequence, although it is common practice to analyze many processing systems as though this were the case. Thus, we deal with finite-length sequences which have finite values in the range 0 ≤ nN−1 and whose values are zero outside this range.

Keywords

Primitive Root Chinese Remainder Theorem Residue Number System Prime Integer Fermat Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. McClellan, Hardware realization of a Fermat number transform, IEEE Trans. Acoust., Speech, Signal Process. ASSP-24, 216–225 (1976).CrossRefGoogle Scholar
  2. 2.
    A. Baraniecka and G. A. Jullien, Hardware implementation of convolution using number theoretic transforms, Proc. Int. Conf. Acoust., Speech, Signal Process., Washington, D.C., 490-492 (1979).Google Scholar
  3. 3.
    R. C. Agarwal and C. S. Burras, Number theoretic transforms to implement fast digital convolution, Proc. IEEE 63, 550–560 (1975).MathSciNetCrossRefGoogle Scholar
  4. 4.
    I. S. Reed and T. K. Traong, A fast DFT algorithm using complex integer transforms, Electron. Lett. 14, 191–193 (1978).CrossRefGoogle Scholar
  5. 5.
    H. J. Nussbaumer, Digital filtering using pseudo Fermat number transform, IEEE Jrans. Acoust., Speech, Signal Process. ASSP-25, 79–83 (1977).CrossRefGoogle Scholar
  6. 6.
    H. J. Nussbaumer, Linear filtering technique for computing Mersenne and Fermat number transforms, IBM J. Res. Dev. 21, 334–339 (1977).zbMATHCrossRefGoogle Scholar
  7. 7.
    H. J. Nussbaumer, Relative evaluation of various number theoretic transforms for digital filtering applications, IEEE Trans. Acoust., Speech, Signal Process. ASSP-26, 88–93 (1978).CrossRefGoogle Scholar
  8. 8.
    H. J. Nussbaumer, Complex convolutions via Fermat number transforms, IBM J. Res. Dev. 20, 282–284 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    H. J. Nussbaumer, Digital filtering using complex Mersenne transforms, IBM J. Res. Dev. 20, 498–504 (1976).MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, Springer-Verlag, Berlin and New York (1981).zbMATHCrossRefGoogle Scholar
  11. 11.
    M. C. Vanwormhoudt, On number theoretic Fourier transforms in residue class rings, IEEE Trans. Acoust., Speech, Signal Process. ASSP-25, 585–586 (1977).CrossRefGoogle Scholar
  12. 12.
    M. C. Vanwormhoudt, Structural properties of complex residue rings applied to number theoretic Fourier transforms, IEEE Trans. Acoust., Speech, Signal Process. ASSP-26, 99–104 (1978).CrossRefGoogle Scholar
  13. 13.
    K. M. Henein, Number Theoretic Transforms in Digital Signal Processing, MSc. Thesis, Imperial College of Science and Technology, University of London (1983).Google Scholar
  14. 14.
    N. M. Nasrabadi, Orthogonal Transforms and their Applications to Image Coding, PhD. Thesis, Imperial College of Science and Technology, University of London (1984).Google Scholar
  15. 15.
    R. N. Gorgui-Naguib and A. Leboyer, Comment on “Determination of p-adic transform bases and lengths,” Electron. Lett. 21, 905–906 (1985).CrossRefGoogle Scholar
  16. 16.
    A. Leboyer, P-adic Numbers—P-adic Transform, MSc. Communications report, Imperial College of Science and Technology (1985).Google Scholar
  17. 17.
    V. Loahakosol and W. Surakampontorn, P-adic transforms, Electron. Lett. 20, 726–727 (1984).CrossRefGoogle Scholar
  18. 18.
    N. M. Nasrabadi and R. A. King, Fast digital convolution using p-adic transforms, Electron. Lett. 19, 266–267 (1983).CrossRefGoogle Scholar
  19. 19.
    N. M. Nasrabadi and R. A. King, Complex number theoretic transform in p-adic field, Proc. IEEE—Int. Conf. Acoust., Speech, Signal Process. 1984, pp. 28A.4.1–28A.4.3 (1984).Google Scholar
  20. 20.
    S.-C. Pei and J.-L. Wu, Determination of p-adic transform bases and lengths, Electron. Lett. 21, 431–432 (1985).CrossRefGoogle Scholar
  21. 21.
    W. W. Adams and L. J. Goldstein, Introduction to Number Theory, Prentice-Hall, Englewood Cliffs, NJ (1976).zbMATHGoogle Scholar
  22. 22.
    T. A. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, Berlin (1976).zbMATHCrossRefGoogle Scholar
  23. 23.
    Z. I. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York (1973).Google Scholar
  24. 24.
    W. J. Leveque, Fundamentals of Number Theory, Addison-Wesley, Reading, Massachusetts (1977).zbMATHGoogle Scholar
  25. 25.
    I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers, 4th edn., John Wiley and Sons, New York (1980).zbMATHGoogle Scholar
  26. 26.
    I. N. Herstein, Topics in Algebra, 2nd edn., John Wiley and Sons, New York (1975).zbMATHGoogle Scholar
  27. 27.
    J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Processing, Prentice-Hall Signal Processing Series (1979).Google Scholar
  28. 28.
    G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th edn., Oxford University Press (1979).Google Scholar
  29. 29.
    C. M. Rader, Discrete convolutions via Mersenne transforms, IEEE Trans. Comput. C-21, 1269–1273 (1972).MathSciNetCrossRefGoogle Scholar
  30. 30.
    R. C. Agarwal and C. S. Burrus, Fast convolution using Fermat number transforms with applications to digital filtering, IEEE Trans. Acoust, Speech, Signal Process. ASSP-22, 87–97 (1974).MathSciNetCrossRefGoogle Scholar
  31. 31.
    S. Winograd, On computing the discrete Fourier transform, Math. Comput. 32, 175–199 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    D. P. Kolba and T. W. Parks, A prime factor FFT algorithm using high speed convolution, IEEE Trans. Acoust., Speech, Signal Process. ASSP-25, 90–103 (1977).Google Scholar
  33. 33.
    I. S. Reed and T. K. Truong, Convolutions over residue classes of quadratic integers, IEEE Trans. Inf. Theory IT-22, 468–475 (1976).MathSciNetCrossRefGoogle Scholar
  34. 34.
    H. J. Nussbaumer and P. Quandalle, Fast computation of discrete Fourier transforms using polynomial transforms, IEEE Trans. Acoust., Speech, Signal Process. ASSP-27, 169–181 (1979).MathSciNetCrossRefGoogle Scholar
  35. 35.
    H. J. Nussbaumer and P. Quandalle, Computation of convolutions and discrete Fourier transforms by polynomial transform, IBM J. Res. Dev. 22, 134–144 (1978).MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    H. J. Nussbaumer, DFT computation by fast polynomial transform algorithms, Electron. Lett. 15, 701–702 (1979).CrossRefGoogle Scholar
  37. 37.
    B. Arambepola and P. J. W. Rayner, Discrete transform over polynomial rings with applications in computing multidimensional convolutions, IEEE Trans. Acoust., Speech, Signal Process. ASSP-28, 407–414 (1980).MathSciNetCrossRefGoogle Scholar
  38. 38.
    H. J. Nussbaumer, Digital filtering using polynomial transforms, Electron. Lett. 13, 386–387 (1977).CrossRefGoogle Scholar
  39. 39.
    I. S. Reed, H. M. Shao, and T. K. Truong, Fast polynomial transform and its implementation by computer, IEE Proc. 128, Part E, No. 1, 50–60 (1981).MathSciNetCrossRefGoogle Scholar
  40. 40.
    B. Arambepola and P. J. W. Rayner, Efficient transforms for multidimensional convolutions, Electron. Lett. 15, 189–190 (1979).MathSciNetCrossRefGoogle Scholar
  41. 41.
    B. Arambepola and P. J. W. Rayner, Multidimensional fast Fourier transform algorithms, Electron. Lett. 15, 382–383 (1979).MathSciNetCrossRefGoogle Scholar
  42. 42.
    H. J. Nussbaumer, New polynomial transform algorithms for multidimensional DFT’s and Convolutions, IEEE Trans. Acoust., Speech, Signal Process. ASSP-29, 761–783 (1981).Google Scholar
  43. 43.
    H. J. Nussbaumer, Inverse polynomial transform algorithms for DFT’s and convolutions, Proc. IEEE—Int. Conf. Acoust., Speech, Signal Process. 1981, 315–318 (1981).Google Scholar
  44. 44.
    K. Hensel, Theorie der Algebraischen Zahlen, Teubner, Leipzig (1908).zbMATHGoogle Scholar
  45. 45.
    K. Hensel, Zahlentheorie, Goschen, Berlin and Leipzig (1913).Google Scholar
  46. 46.
    R. N. Gorgui-Naguib, P-adic Number Theory and its Applications in a Cryptographic System, PhD. Thesis, Imperial College of Science and Technology, University of London (1986).Google Scholar
  47. 47.
    G. Bachman, Introduction to P-adic Numbers and Valuation Theory, Academic Press, New York (1964).Google Scholar
  48. 48.
    E. V. Krishnamurthy, T. Mahadeva Rao, and K. Subramanian, Finite-segment p-adic number systems with applications to exact computation, Proc. Indian Acad. Sci. 81A, 58–79 (1975).MathSciNetGoogle Scholar
  49. 49.
    E. V. Krishnamurthy, T. Mahadeva Rao, and K. Subramanian, P-adic arithmetic procedures for exact matrix computations, Proc. Indian Acad. Sci. 82A, 165–175 (1975).MathSciNetGoogle Scholar
  50. 50.
    E. V. Krishnamurthy, Matrix processors using p-adic arithmetic for exact linear computations, IEEE Trans. Comput. C-26, 633–639 (1977).MathSciNetCrossRefGoogle Scholar
  51. 51.
    R. N. Gorgui-Naguib and R. A. King, Comments on matrix processors using p-adic arithmetic for exact linear computation, IEEE Trans. Comput. C-35, 928–930 (1986).MathSciNetCrossRefGoogle Scholar
  52. 52.
    N. Koblitz, P-adic Numbers, P-adic Analysis and Zeta-functions, Graduate Texts in Mathematics, Springer-Verlag, Berlin (1977).zbMATHCrossRefGoogle Scholar
  53. 53.
    I. S. Reed and T. K. Truong, Fast Mersenne-prime transforms for digital filtering, Proc. IEEE 125, 433–440 (1978).MathSciNetGoogle Scholar
  54. 54.
    K. Y. Liu, I. S. Reed, and T. K. Truong, Fast number theoretic transforms for digital filtering, Electron. Lett. 12, 644–646 (1976).MathSciNetCrossRefGoogle Scholar
  55. 55.
    C. M. Rader, Discrete Fourier transforms when the number of data samples is prime, Proc. IEEE 56, 1107–1108 (1968).CrossRefGoogle Scholar
  56. 56.
    R. C. Agarwal and J. W. Cooley, New algorithms for digital convolution, IEEE Trans. Acoust, Speech, Signal Process. ASSP-25, 392–410 (1977).CrossRefGoogle Scholar
  57. 57.
    K. Mahler, P-adic Numbers and their Functions, Cambridge University Press (1980).Google Scholar
  58. 58.
    H. J. Nussbaumer, Fast polynomial algorithms for digital convolution, IEEE Trans. Acoust, Speech, Signal Process. ASSP-28, 205–215 (1980).MathSciNetCrossRefGoogle Scholar
  59. 59.
    G. A. Jullien, R. Krichman, and W. C. Miller, Complex digital signal processing over finite rings, IEEE Trans. Circuits Syst. CAS-34, 365–377 (1987).CrossRefGoogle Scholar
  60. 60.
    G. A. Jullien, Implementation of multiplication modulo a prime number, with applications to number theoretic transforms, IEEE Trans. Comput. C-29, 899–905 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Robert King
    • 1
  • Majid Ahmadi
    • 2
  • Raouf Gorgui-Naguib
    • 3
  • Alan Kwabwe
    • 4
  • Mahmood Azimi-Sadjadi
    • 5
  1. 1.Imperial CollegeLondonEngland
  2. 2.University of WindsorWindsorCanada
  3. 3.University of Newcastle upon TyneNewcastle upon TyneEngland
  4. 4.Imperial College and Bankers Trust CompanyLondonEngland
  5. 5.Colorado State UniversityFort CollinsUSA

Personalised recommendations