State-Space Description

  • Robert King
  • Majid Ahmadi
  • Raouf Gorgui-Naguib
  • Alan Kwabwe
  • Mahmood Azimi-Sadjadi

Abstract

In the preceding chapters, we have regarded the system as a closed box which converts an input signal into an output. The system has been described directly in terms of the relationship between input and output signals, either in the time or space domains, or alternatively in the Fourier-transform domain of either of these.

Keywords

State Matrix State Transition Matrix Minimal Realization Product Quantization Observability Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. K. Sinha, Multivariable Control—An Introduction, Dekker, New York (1984).MATHGoogle Scholar
  2. 2.
    B. C. Kuo, Digital Control Systems, Holt, Reinhart and Winston, New York (1980).Google Scholar
  3. 3.
    P. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, Freeman, San Francisco (1963).Google Scholar
  4. 4.
    E. Fornasini and G. Marchesini, State-space realisation theory of two-dimensional filters, IEEE Trans. Autom. Control AC-21, 484–492 (1976).MathSciNetCrossRefGoogle Scholar
  5. 5.
    D. D. Givone and R. P. Roesser, Multidimensional linear iterative circuits—General properties, IEEE Trans. Comput. C-21, 1067–1073 (1972).MathSciNetCrossRefGoogle Scholar
  6. 6.
    R. P. Roesser, A discrete state-space model for linear image processing, IEEE Trans. Autom. Control AC-20, 1–10 (1975).MathSciNetCrossRefGoogle Scholar
  7. 7.
    S-Y. Kung, B. C. Levy, M. Morf, and T. Kailath, New results in 2-D systems theory, Part II: 2-D state-space models—Realization and the notions of controllability, observability and minimality, Proc. IEEE 65, 945–961 (1977).CrossRefGoogle Scholar
  8. 8.
    W. S. Lu and E. B. Lee, Stability analysis for two-dimensional systems, IEEE Trans. Circuits Syst. CAS-30, 455–461 (1983).MathSciNetGoogle Scholar
  9. 9.
    W. S. Lu and E. B. Lee, Stability analysis for two-dimensional systems via a Lyapunov approach, IEEE Trans. Circuits Syst. CAS-32, 61–68 (1985).MathSciNetGoogle Scholar
  10. 10.
    R. Eising, Controllability and observability of 2-D systems, IEEE Trans. Autom. Control AC-24, 132–133 (1979).MathSciNetCrossRefGoogle Scholar
  11. 11.
    C. Ciftcibasi and O. Yuksel, Sufficient or necessary conditions for modal controllability and observability of Roesser’s 2-D system model, IEEE Trans. Autom. Control AC-28, 527–529 (1983).MathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Morf, B. C. Levy, and S. Y. Kung, New results in 2-D systems theory, Part I: 2-D polynomial matrices, factorization and coprimeness, Proc. IEEE 65, 861–872 (1977).CrossRefGoogle Scholar
  13. 13.
    N. K. Bose, Applied Multidimensional System Theory, Van Nostrand Reinhold, New York (1982).Google Scholar
  14. 14.
    S. Y. Hwang, Roundoff noise in state-space digital filtering: a general analysis, IEEE Trans. Acoust., Speech, Signal Process. ASSP-24, 256–262 (1976).CrossRefGoogle Scholar
  15. 15.
    S. Y. Hwang, Dynamic range constraint in state-space digital filtering, IEEE Trans. Acoust., Speech, Signal Process. ASSP-23, 591–593 (1975).CrossRefGoogle Scholar
  16. 16.
    S. Y. Hwang, Minimum uncorrelated unit noise in state-space digital filtering, IEEE Trans. Acoust., Speech, Signal Process. ASSP-25, 273–281 (1977).CrossRefGoogle Scholar
  17. 17.
    M. R. Azimi-Sadjadi, The New Approach towards Minimum Roundoff Noise in 2-D State-Space Digital Filtering, MSc Thesis, Imperial College (1978).Google Scholar
  18. 18.
    T. Lin, M. Kawamata, and T. Higuchi, A unified study on the roundoff noise in 2-D state-space digital filters, IEEE Trans. Circuits Syst. CAS-33, 724–730 (1986).CrossRefGoogle Scholar
  19. 19.
    W. Lu and A. Antoniou, Synthesis of 2-D state-space fixed point digital filter structures with minimum roundoff noise, IEEE Trans. Circuits Syst. CAS-33, 965–973 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Robert King
    • 1
  • Majid Ahmadi
    • 2
  • Raouf Gorgui-Naguib
    • 3
  • Alan Kwabwe
    • 4
  • Mahmood Azimi-Sadjadi
    • 5
  1. 1.Imperial CollegeLondonEngland
  2. 2.University of WindsorWindsorCanada
  3. 3.University of Newcastle upon TyneNewcastle upon TyneEngland
  4. 4.Imperial College and Bankers Trust CompanyLondonEngland
  5. 5.Colorado State UniversityFort CollinsUSA

Personalised recommendations