Skip to main content

Abstract

A one-dimensional (1-D) digital filter, as noted in Section 1.3, is generally defined by

$${y_n} = \sum\limits_{i = 0}^M {{a_i}{u_{n - i}}} - \sum\limits_{i = 1}^N {{b_i}{y_{n - i}}} $$
(5.1)

where {u n } is the input sequence, {y n } is the output sequence, and a i , and b i are some constants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1975).

    Google Scholar 

  2. L. B. Jackson, An Analysis of Roundoff Noise in Digital Filters, ScD Thesis, Stevens Institute of Technology, Hoboken, New Jersey (1969).

    Google Scholar 

  3. B. Liu, Effect of finite word length on the accuracy of digital filters, IEEE Trans. Circuit Theory CT-18, 670–677 (1971).

    Article  Google Scholar 

  4. V. B. Lawrence, Use of Orthogonal Functions in the Design of Digital Filters, PhD Thesis, London University (1972).

    Google Scholar 

  5. B. Liu and T. Kaneko, Error analysis of digital filters realized with floating-point arithmetic, Proc. IEEE 57, 1735–1747 (1969).

    Article  Google Scholar 

  6. J. K. Aggarwal, Input Quantization and Arithmetic Roundoff in Digital Filters—A Review, Proc. NATO Advanced Study Institute on Network and Signal Theory, PPL Conf. Pubi. No. 12, 315–343 (1972).

    Google Scholar 

  7. W. R. Bennett, Spectra of quantized signals, Bell Syst. Tech. J. 27, 446–472 (1948).

    Google Scholar 

  8. A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill, New York (1965).

    MATH  Google Scholar 

  9. L. Jackson, On the interaction of roundoff noise and dynamic range in digital filters, Bell Syst. Tech. J. 49, 159–184 (1970).

    MATH  Google Scholar 

  10. B. Liu and M. E. Van Valkenburg, On roundoff error of fixed-point digital filters using sign-magnitude truncation, IEEE Trans. Circuit Theory CT-19, 536–537 (1972).

    Article  Google Scholar 

  11. I. W. Sandberg, Floating-point-roundoff accumulation in digital-filter realizations, Bell Syst. Tech. J. 46, 1775–1791 (1967).

    MATH  Google Scholar 

  12. T. Kaneko and B. Liu, Effect of coefficient rounding in floating-point digital filters, IEEE Trans. Aerosp. Electron. Syst. AES-7, 995–1003 (1971).

    Article  Google Scholar 

  13. E. P. F. Kan and J. K. Aggarwal, Error analysis of digital filters employing floating-point arithmetic, IEEE Trans. Circuit Theory CT-18, 678–686 (1971).

    Article  Google Scholar 

  14. A. Fettweis, Some Statistical Properties of Floating-Point Roundoff Noise, Proc. 16th Midwest Symp. Circuit Theory, II.2.1-II.2.10 (1973).

    Google Scholar 

  15. D. S. K. Chan, Roundoff Noise in Cascade Realization of Finite Impulse Response Digital Filters, SB and SM Thesis, Department of Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Mass. (1972).

    Google Scholar 

  16. L. B. Jackson, Roundoff-noise analysis for fixed-point digital filters realized in cascade or parallel form, IEEE Trans. Audio Electroacoust. AU-18, 107–122 (1970).

    Article  Google Scholar 

  17. D. S. K. Chan and L. R. Rabiner, Theory of roundoff noise in cascade realizations of finite impulse response digital filters, Bell Syst. Tech. J. 52, 329–345 (1973).

    MATH  Google Scholar 

  18. L. B. Jackson, An Analysis of Limit Cycles due to Multiplication Rounding in Recursive Digital (Sub) Filters, Proc. 7th Annual Allerton Conference on Circuit and System Theory, 69-78 (October 1969).

    Google Scholar 

  19. P. M. Ebert, J. E. Mazo, and M. G. Taylor, Overflow oscillations in digital filters, Bell Syst. Tech. J. 48, 2990–3020 (1969).

    Google Scholar 

  20. J. F. Kaiser, Some Practical Considerations in the Realization of Linear Digital Filters, Proc. 3rd Allerton Annual Conference on Circuit and System Theory, 621-633 (October 1965).

    Google Scholar 

  21. S. R. Parker and S. F. Hess, Limit cycle oscillations in digital filters, IEEE Trans. Circuit Theory CT-18, 687–697 (1971).

    Article  Google Scholar 

  22. K. P. Prasad and P. S. Reddy, Limit cycles in second-order digital filters, J. Inst. Electron. Telecommun. Eng. (India) 26, 85–86 (1980).

    Google Scholar 

  23. V. B. Lawrence and K. V. Mina, A new and interesting class of limit cycles in recursive digital filters, Bell Syst. Tech. J. 58, 379–408 (1979).

    Google Scholar 

  24. D. C. McLernon and R. A. King, Additional properties of one-dimensional limit cycles, IEE Proc. 133, Part G, No. 3, 140–144 (1986).

    MathSciNet  Google Scholar 

  25. T. A. C. M. Claasen, W. F. G. Mecklenbrauker, and J. B. H. Peek, Some remarks on the classification of limit cycles in digital filters, Philips Res. Rep. 28, 297–305 (1973).

    Google Scholar 

  26. D. C. Munson, Jr., J. H. Strickland, Jr., and T. P. Walker, Maximum amplitude zero-input limit cycles in digital filters, IEEE Trans. Circuits Syst. CAS-31, 266–275 (1984).

    Article  Google Scholar 

  27. N. G. Kingsbury and P. J. W. Rayner, Digital filtering using logarithmic arithmetic, Electron. Lett. 7, 56–58 (1971).

    Article  Google Scholar 

  28. E. E. Swartzlander, Jr. and A. G. Alexopoulos, The Sign/logarithm number system, IEEE Trans. Comput. C-24, 1238–1242 (1975).

    Article  MathSciNet  Google Scholar 

  29. T. Kurokawa, Error Analysis of Digital Filters with Logarithmic Number System, Ph.D. Dissertation, Univ. Oklahoma, Norman (1978).

    Google Scholar 

  30. T. Kurokawa, J. A. Payne, and S. C. Lee, Error analysis of recursive digital filters implemented with logarithmic number systems, IEEE Trans. Acoust., Speech, Signal Process. ASSP-28, 706–715 (1980).

    Article  Google Scholar 

  31. F. J. Taylor, Logarithmic Arithmetic Unit for Signal Processing, IEEE Int. Conf. on Acoustics, Speech and Signal Process., Vol. 3, 44.10/1–4 (1984).

    Google Scholar 

  32. R. V. Hogg and T. Craig, Introduction to Mathematical Statistics, The MacMillan Company, London (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

King, R., Ahmadi, M., Gorgui-Naguib, R., Kwabwe, A., Azimi-Sadjadi, M. (1989). Quantization and Roundoff Errors. In: Digital Filtering in One and Two Dimensions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0918-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0918-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0920-6

  • Online ISBN: 978-1-4899-0918-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics