Advertisement

Stability and Stabilization Techniques

  • Robert King
  • Majid Ahmadi
  • Raouf Gorgui-Naguib
  • Alan Kwabwe
  • Mahmood Azimi-Sadjadi

Abstract

The term stability is generally used to describe a filter in which the convolution of the impulse response with some bounded input sequence will always yield a bounded output.

Keywords

Unit Circle Amplitude Spectrum Stabilization Technique Check Condition Principal Minor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. I. Jury, Theory and Application of the z-Transform Method, John Wiley and Sons, New York (1964).Google Scholar
  2. 2.
    H. W. Schussler, A stability theorem for discrete systems, IEEE Trans. Acoust., Speech, Signal Process. ASSP-24, 87–89 (1976).MathSciNetCrossRefGoogle Scholar
  3. 3.
    V. Ramachandran and C. S. Gargour, Implementation of a stability test of 1-D discrete system based on Schussler’s theorem and some consequent coefficient conditions, J. Franklin Inst. 317, 341–358 (1984).MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    R. R. Read and S. Treitel, The stabilization of two-dimensional recursive filters via the discrete Hilbert transform, IEEE Trans. Geosci. Electron. GE-11, 153–160 (1973).CrossRefGoogle Scholar
  5. 5.
    B. Gold and C. M. Rader, Digital Processing of Signals, McGraw-Hill, New York (1969).zbMATHGoogle Scholar
  6. 6.
    V. Cizek, Discrete Hilbert transform, IEEE Trans. Audio Electroacoust. AU-18, 340–343 (1970).CrossRefGoogle Scholar
  7. 7.
    C. Farmer and J. B. Bednar, Stability of spatial digital filters, Math. Biosci. 14, 113–119 (1972).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    J. L. Shanks, S. Treitel, and J. H. Justice, Stability and synthesis of two-dimensional recursive filters, IEEE Trans. Audio Electroacoust. AU-20, 115–128 (1972).CrossRefGoogle Scholar
  9. 9.
    T. S. Huang, Stability of two-dimensional recursive filters, IEEE Trans. Audio Electroacoust. AU-20, 158–163 (1972).CrossRefGoogle Scholar
  10. 10.
    H. G. Ansell, On certain two-variable generalizations of circuit theory, with applications to networks of transmission lines and lumped reactances, IEEE Trans. Circuit Theory CT-11, 214–223 (1964).Google Scholar
  11. 11.
    E. A. Guillemin, Synthesis of Passive Networks, John Wiley and Sons, New York (1957)Google Scholar
  12. 12.
    B. D. O. Anderson and E. I. Jury, Stability test for two-dimensional recursive filters, IEEE Trans. Audio Electroacoust. AU-21, 366–372 (1973).MathSciNetCrossRefGoogle Scholar
  13. 13.
    E. I. Jury, Theory and Application of the z-Transform Method, John Wiley and Sons, New York (1964).Google Scholar
  14. 14.
    E. I. Jury, A note on the reciprocal zeros of a real polynomial with respect to the unit circle, IEEE Trans. Circuit Theory CT-11, 292–294 (1964).Google Scholar
  15. 15.
    G. A. Maria and M. M. Fahmy, On the stability of two-dimensional digital filters, IEEE Trans. Audio Electroacoust. AU-21, 470–472 (1973).CrossRefGoogle Scholar
  16. 16.
    D. Goodman, Some stability properties of two-dimensional linear shift-invariant digital filters, IEEE Trans. Circuits Syst. CAS-24, 201–208 (1977).CrossRefGoogle Scholar
  17. 17.
    E. Robinson, Statistical Communication and Detection, Hafner, New York (1967).Google Scholar
  18. 18.
    R. A. Wiggins, On Factoring the Correlations of Discrete Multivariable Stochastic Processes, Mass. Inst. Tech., Cambridge, Sci. Report 9 of Contract AF, 19(604) 7378, 127–152 (1965).Google Scholar
  19. 19.
    Y. Genin and Y. Kamp, Comments on, “On the stability of the least mean-square inverse process in two-dimensional digital filters,” IEEE Trans. Acoust., Speech, Signal Process ASSP-25, 92–93 (1977).CrossRefGoogle Scholar
  20. 20.
    J. L. Shanks and R. R. Read, Techniques for Stabilizing Two-Dimensional Finite Difference Operator, Proc. of Colloque Int. Point Transformations and Their Application, Toulouse, France (September 1973).Google Scholar
  21. 21.
    P. Pistor, Stability criterion for recursive filters, IBM J. Res. Dev. 18, 59–71 (1974).MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    S. Chakrabarti and S. K. Mitra, Design of two-dimensional filters via spectral transformations, Proc. IEEE 65, 905–914 (1977).CrossRefGoogle Scholar
  23. 23.
    D. Goodman, Some difficulties with the double bilinear transformation in 2-D recursive filter design, Proc. IEEE 66, 796–797 (1978).CrossRefGoogle Scholar
  24. 24.
    P. K. Rajan, H. C. Reddy, M. N. S. Swamy, and V. Ramachandran, Generation of two-dimensional digital functions without nonessential singularities of the second kind, IEEE Trans. Acoust., Speech, Signal Process ASSP-28, 216–223 (1980).MathSciNetCrossRefGoogle Scholar
  25. 25.
    V. Ramachandran and M. Ahmadi, Design of 2-D stable analog and recursive digital filters using properties of the derivative of even or odd parts of Hurwitz polynomials, J. Franklin Inst. 315, 259–267 (1983).MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    M. Ahmadi and V. Ramachandran, New method for generating two-variable VSHPs and its application in the design of two-dimensional recursive digital filters with prescribed magnitude and constant group delay responses, IEE Proc. 131, Part G, 151–155 (1984).CrossRefGoogle Scholar
  27. 27.
    M. Ahmadi, M. T. Boraie, and V. Ramachandran, Generation of 2-Variable VSHPs using Properties of the Resistance Matrices and its Application in Recursive 2-D Filter Design, Invited Paper, Proc. 1985 IEEE Int. Conf. on Decision and Control, Fort Lauderdale, Florida, USA, 1590-1593 (1985).Google Scholar
  28. 28.
    M. A. Abiri, M. Ahmadi, and V. Ramachandran, An alternative approach in generating a 2-variable very strictly Hurwitz polynomial (VSHP) and its application, J. Franklin Inst. 324, 187–203 (1987).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Robert King
    • 1
  • Majid Ahmadi
    • 2
  • Raouf Gorgui-Naguib
    • 3
  • Alan Kwabwe
    • 4
  • Mahmood Azimi-Sadjadi
    • 5
  1. 1.Imperial CollegeLondonEngland
  2. 2.University of WindsorWindsorCanada
  3. 3.University of Newcastle upon TyneNewcastle upon TyneEngland
  4. 4.Imperial College and Bankers Trust CompanyLondonEngland
  5. 5.Colorado State UniversityFort CollinsUSA

Personalised recommendations