Skip to main content

Abstract

The term stability is generally used to describe a filter in which the convolution of the impulse response with some bounded input sequence will always yield a bounded output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. I. Jury, Theory and Application of the z-Transform Method, John Wiley and Sons, New York (1964).

    Google Scholar 

  2. H. W. Schussler, A stability theorem for discrete systems, IEEE Trans. Acoust., Speech, Signal Process. ASSP-24, 87–89 (1976).

    Article  MathSciNet  Google Scholar 

  3. V. Ramachandran and C. S. Gargour, Implementation of a stability test of 1-D discrete system based on Schussler’s theorem and some consequent coefficient conditions, J. Franklin Inst. 317, 341–358 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. R. Read and S. Treitel, The stabilization of two-dimensional recursive filters via the discrete Hilbert transform, IEEE Trans. Geosci. Electron. GE-11, 153–160 (1973).

    Article  Google Scholar 

  5. B. Gold and C. M. Rader, Digital Processing of Signals, McGraw-Hill, New York (1969).

    MATH  Google Scholar 

  6. V. Cizek, Discrete Hilbert transform, IEEE Trans. Audio Electroacoust. AU-18, 340–343 (1970).

    Article  Google Scholar 

  7. C. Farmer and J. B. Bednar, Stability of spatial digital filters, Math. Biosci. 14, 113–119 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. L. Shanks, S. Treitel, and J. H. Justice, Stability and synthesis of two-dimensional recursive filters, IEEE Trans. Audio Electroacoust. AU-20, 115–128 (1972).

    Article  Google Scholar 

  9. T. S. Huang, Stability of two-dimensional recursive filters, IEEE Trans. Audio Electroacoust. AU-20, 158–163 (1972).

    Article  Google Scholar 

  10. H. G. Ansell, On certain two-variable generalizations of circuit theory, with applications to networks of transmission lines and lumped reactances, IEEE Trans. Circuit Theory CT-11, 214–223 (1964).

    Google Scholar 

  11. E. A. Guillemin, Synthesis of Passive Networks, John Wiley and Sons, New York (1957)

    Google Scholar 

  12. B. D. O. Anderson and E. I. Jury, Stability test for two-dimensional recursive filters, IEEE Trans. Audio Electroacoust. AU-21, 366–372 (1973).

    Article  MathSciNet  Google Scholar 

  13. E. I. Jury, Theory and Application of the z-Transform Method, John Wiley and Sons, New York (1964).

    Google Scholar 

  14. E. I. Jury, A note on the reciprocal zeros of a real polynomial with respect to the unit circle, IEEE Trans. Circuit Theory CT-11, 292–294 (1964).

    Google Scholar 

  15. G. A. Maria and M. M. Fahmy, On the stability of two-dimensional digital filters, IEEE Trans. Audio Electroacoust. AU-21, 470–472 (1973).

    Article  Google Scholar 

  16. D. Goodman, Some stability properties of two-dimensional linear shift-invariant digital filters, IEEE Trans. Circuits Syst. CAS-24, 201–208 (1977).

    Article  Google Scholar 

  17. E. Robinson, Statistical Communication and Detection, Hafner, New York (1967).

    Google Scholar 

  18. R. A. Wiggins, On Factoring the Correlations of Discrete Multivariable Stochastic Processes, Mass. Inst. Tech., Cambridge, Sci. Report 9 of Contract AF, 19(604) 7378, 127–152 (1965).

    Google Scholar 

  19. Y. Genin and Y. Kamp, Comments on, “On the stability of the least mean-square inverse process in two-dimensional digital filters,” IEEE Trans. Acoust., Speech, Signal Process ASSP-25, 92–93 (1977).

    Article  Google Scholar 

  20. J. L. Shanks and R. R. Read, Techniques for Stabilizing Two-Dimensional Finite Difference Operator, Proc. of Colloque Int. Point Transformations and Their Application, Toulouse, France (September 1973).

    Google Scholar 

  21. P. Pistor, Stability criterion for recursive filters, IBM J. Res. Dev. 18, 59–71 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Chakrabarti and S. K. Mitra, Design of two-dimensional filters via spectral transformations, Proc. IEEE 65, 905–914 (1977).

    Article  Google Scholar 

  23. D. Goodman, Some difficulties with the double bilinear transformation in 2-D recursive filter design, Proc. IEEE 66, 796–797 (1978).

    Article  Google Scholar 

  24. P. K. Rajan, H. C. Reddy, M. N. S. Swamy, and V. Ramachandran, Generation of two-dimensional digital functions without nonessential singularities of the second kind, IEEE Trans. Acoust., Speech, Signal Process ASSP-28, 216–223 (1980).

    Article  MathSciNet  Google Scholar 

  25. V. Ramachandran and M. Ahmadi, Design of 2-D stable analog and recursive digital filters using properties of the derivative of even or odd parts of Hurwitz polynomials, J. Franklin Inst. 315, 259–267 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Ahmadi and V. Ramachandran, New method for generating two-variable VSHPs and its application in the design of two-dimensional recursive digital filters with prescribed magnitude and constant group delay responses, IEE Proc. 131, Part G, 151–155 (1984).

    Article  Google Scholar 

  27. M. Ahmadi, M. T. Boraie, and V. Ramachandran, Generation of 2-Variable VSHPs using Properties of the Resistance Matrices and its Application in Recursive 2-D Filter Design, Invited Paper, Proc. 1985 IEEE Int. Conf. on Decision and Control, Fort Lauderdale, Florida, USA, 1590-1593 (1985).

    Google Scholar 

  28. M. A. Abiri, M. Ahmadi, and V. Ramachandran, An alternative approach in generating a 2-variable very strictly Hurwitz polynomial (VSHP) and its application, J. Franklin Inst. 324, 187–203 (1987).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

King, R., Ahmadi, M., Gorgui-Naguib, R., Kwabwe, A., Azimi-Sadjadi, M. (1989). Stability and Stabilization Techniques. In: Digital Filtering in One and Two Dimensions. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0918-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0918-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0920-6

  • Online ISBN: 978-1-4899-0918-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics