Nonrecursive Filters

  • Robert King
  • Majid Ahmadi
  • Raouf Gorgui-Naguib
  • Alan Kwabwe
  • Mahmood Azimi-Sadjadi


It was explained in Chapter 1 that digital filters can be divided into two classes, namely, nonrecursive and recursive.


Impulse Response Digital Filter Window Function Extremal Frequency Kaiser Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1978).Google Scholar
  2. 2.
    A. Antoniou, Digital Filters: Analysis and Design, McGraw-Hill, New York (1979).Google Scholar
  3. 3.
    L. C. Ludeman, Fundamentals of Digital Signal Processing, Harper and Row, New York (1986).Google Scholar
  4. 4.
    L. B. Jackson, Digital Filters and Signal Processing, Kluwer Academic Publishers, Boston (1986).Google Scholar
  5. 5.
    A. V. Oppenheim and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1975).zbMATHGoogle Scholar
  6. 6.
    F. F. Kuo and J. F. Kaiser, System Analysis by Digital Computer, John Wiley and Sons, New York (1966).zbMATHGoogle Scholar
  7. 7.
    A. Antoniou, M. Ahmadi, and C. Charalambous, Design of factorable lowpass 2-dimensional digital filters satisfying prescribed specifications, Proc. IEE 128, Part G, No. 2, 53–60 (1981).Google Scholar
  8. 8.
    A. Antoniou and C. Charalambous, An Efficient Approach for the Design of Digital Differentiators based on the Kaiser Window Function, Proc. IEEE Int. Conf. on Circuits and Computers, 1166-1171 (1980).Google Scholar
  9. 9.
    L. R. Rabiner, J. H. McClellan, and T. W. Parks, FIR digital filter design techniques using weighted Chebyshev approximation, Proc. IEEE 63, 595–610 (1975).CrossRefGoogle Scholar
  10. 10.
    A. Antoniou, Accelerated procedure for the design of equiripple nonrecursive digital filters, Proc. IEE 129, Part G, No. 1, 1–10 (1982).MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. E. Dudgeon and R. M. Mersereau, Multi-Dimensional Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1984).Google Scholar
  12. 12.
    T. S. Huang, Two-dimensional windows, IEEE Trans. Audio Electroacoust. AU-20, 88–89 (1972).CrossRefGoogle Scholar
  13. 13.
    M. Ahmadi and A. Chottera, An improved method for the design of 2-D FIR digital filters with circular and rectangular cut-off boundary using Kaiser window, Can. Electron. Eng. J. 8, 3–8 (1983).Google Scholar
  14. 14.
    J. H. McClellan, On the Design of One-Dimensional and Two-Dimensional FIR Digital Filters, Ph.D. Dissertation, Department of Electrical Engineering, Rice University, Houston, Texas, USA (1973).Google Scholar
  15. 15.
    R. M. Mersereau, W. F. G. Mecklenbräuker, and T. F. Quatieri, Jr., McClellan transformations for two-dimensional digital filtering: I—Design, IEEE Trans. Circuits Syst. CAS-23, 405–414 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Robert King
    • 1
  • Majid Ahmadi
    • 2
  • Raouf Gorgui-Naguib
    • 3
  • Alan Kwabwe
    • 4
  • Mahmood Azimi-Sadjadi
    • 5
  1. 1.Imperial CollegeLondonEngland
  2. 2.University of WindsorWindsorCanada
  3. 3.University of Newcastle upon TyneNewcastle upon TyneEngland
  4. 4.Imperial College and Bankers Trust CompanyLondonEngland
  5. 5.Colorado State UniversityFort CollinsUSA

Personalised recommendations