Applications

  • Robert King
  • Majid Ahmadi
  • Raouf Gorgui-Naguib
  • Alan Kwabwe
  • Mahmood Azimi-Sadjadi

Abstract

In the previous chapters, we have considered the major theoretical issues involved in digital filter design, analysis, and implementation. In some cases, examples have been provided to illustrate specific points.

Keywords

Kalman Filter Point Spread Function Digital Filter Image Restoration Impulse Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. K. Bose (ed.), Special issue on multidimensional systems, Proc. IEEE 65, 819–922 (1977).Google Scholar
  2. 2.
    R. M. Mersereau and D. E. Dudgeon, Two dimensional digital filtering, Proc. IEEE 63, 610–623 (1975).CrossRefGoogle Scholar
  3. 3.
    B. R. Hunt, Digital image processing, Proc. IEEE 63, 693–708 (1975).CrossRefGoogle Scholar
  4. 4.
    R. W. Hamming, Digital Filters, Prentice-Hall, Englewood Cliffs, NJ (1983).Google Scholar
  5. 5.
    T. S. Huang (ed.), Picture Processing and Digital Filtering, Springer-Verlag, Berlin (1979).MATHGoogle Scholar
  6. 6.
    A. V. Oppenheim and R. W. Shafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, NJ (1975).MATHGoogle Scholar
  7. 7.
    L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, Englewood Cliffs, NJ (1975).Google Scholar
  8. 8.
    J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, Reading, Massachusetts (1971).Google Scholar
  9. 9.
    A. V. Oppenheim, A. S. Willsky, with I. T. Young, Signals and Systems, Prentice-Hall, Englewood Cliffs, NJ (1983).MATHGoogle Scholar
  10. 10.
    A. S. Kwabwe, Image Reconstruction from Incomplete Information, Ph.D. Thesis, Imperial College (1984).Google Scholar
  11. 11.
    J. S. Urn, Image restoration by short space spectral subtraction, IEEE Trans. Acoust., Speech, Signal Process. ASSP-28, 191–197 (1980).Google Scholar
  12. 12.
    A. V. Oppenheim, R. W. Schäfer, and T. G. Stockham, Nonlinear filtering of multiplied and convolved signals, Proc. IEEE 56, 1264–1291 (1968).CrossRefGoogle Scholar
  13. 13.
    H. C. Andrews and B. R. Hunt, Digital Image Restoration, Prentice-Hall, Englewood Cliffs, NJ (1977).Google Scholar
  14. 14.
    W. K. Pratt, Digital Image Processing, John Wiley and Sons, New York (1978).Google Scholar
  15. 15.
    A. Kundu, S. K. Mitra, and P. P. Vaidyanathan, Application of two-dimensional generalized mean filtering for removal of impulse noises from images, IEEE Trans. Acoust., Speech, Signal Process. ASSP-32, 600–609 (1984).CrossRefGoogle Scholar
  16. 16.
    I. Pitas and A. N. Venetsanopoulos, Nonlinear mean filters in image processing, IEEE Trans. Acoust., Speech, Signal Process. ASSP-34, 573–584 (1986).CrossRefGoogle Scholar
  17. 17.
    B. Ramamurthi and A. Gersho, Nonlinear space-variant postprocessing of block coded images, IEEE Trans. Acoust., Speech, Signal Process. ASSP-34, 1258–1268 (1986).CrossRefGoogle Scholar
  18. 18.
    D. C. Munson and J. S. Lim, Reduction of the Blocking Effect in Images, IEEE International Conference on Acoustics, Speech and Signal Processing, San Diego (1984).Google Scholar
  19. 19.
    C. W. Helstrom, Image restoration by the method of least squares, J. Opt. Soc. Am. 57, 297–303 (1967).CrossRefGoogle Scholar
  20. 20.
    G. M. Robbins and T. S. Huang, Inverse filtering for linear shift-variant imaging systems, Proc. IEEE 60, 862–872 (1972).CrossRefGoogle Scholar
  21. 21.
    W. K. Pratt, Generalized Wiener filtering computation techniques, IEEE Trans. Comput. C-21, 636–641 (1972).CrossRefGoogle Scholar
  22. 22.
    T. G. Stockham Jr., T. M. Cannon, and R. B. Ingebretsen, Blind deconvolution through digital signal processing, Proc. IEEE 63, 678–692 (1975).CrossRefGoogle Scholar
  23. 23.
    A. V. Oppenheim and J. S. Urn, The importance of phase in signals, Proc. IEEE 69, 529–541 (1981).CrossRefGoogle Scholar
  24. 24.
    T. S. Huang, J. W. Burnett, and A. G. Deczky, The importance of phase in image processing filters, IEEE Trans. Acoust, Speech, Signal Process. ASSP-23, 529–542 (1975).CrossRefGoogle Scholar
  25. 25.
    D. L. Phillips, A technique for numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach. 9, 97–101 (1962).CrossRefGoogle Scholar
  26. 26.
    M. S. Murphy and L. M. Silverman, Image model representation and line-by-line recursive restoration, IEEE Trans. Autom. Control AC-23, 809–816 (1978).CrossRefGoogle Scholar
  27. 27.
    S. R. Powell and L. M. Silverman, Modeling of two-dimensional covariance functions with application to image restoration, IEEE Trans. Autom. Control AC-19, 8–13 (1974).MathSciNetCrossRefGoogle Scholar
  28. 28.
    A. Habibi, Two-dimensional Bayesian estimate of images, Proc. IEEE 60, 878–883 (1972).CrossRefGoogle Scholar
  29. 29.
    J. W. Woods and C. H. Radewan, Kaiman filtering in two dimensions, IEEE Trans. Inf. Theory IT-23, 473–482 (1977).MathSciNetCrossRefGoogle Scholar
  30. 30.
    J. W. Woods, Two-dimensional discrete Markovian fields, IEEE Trans. Inf. Theory IT-18, 232–240 (1972).MathSciNetCrossRefGoogle Scholar
  31. 31.
    A. K. Jain and E. Angel, Image restoration, modelling, and reduction of dimensionality, IEEE Trans. Comput. C-23, 470–476 (1974).CrossRefGoogle Scholar
  32. 32.
    L. E. Franks, A model for the random video process, Bell Syst. Tech. J. 45, 609–630 (1966).MATHGoogle Scholar
  33. 33.
    N. E. Nahi and C. A. Franco, Recursive image enhancement—vector processing, IEEE Trans. Commun. 21, 305–311 (1973).CrossRefGoogle Scholar
  34. 34.
    B. R. Suresh and B. A. Shenoi, New results in two-dimensional Kaiman filtering with applications to image restoration, IEEE Trans. Circuits Syst. CAS-28, 307–319 (1981).CrossRefGoogle Scholar
  35. 35.
    N. E. Nahi, Role of recursive estimation in statistical image enhancement, Proc. IEEE 60, 872–877 (1972).CrossRefGoogle Scholar
  36. 36.
    A. M. Tekalp, H. Kaufman, and J. W. Woods, Identification of image and blur parameters for the restoration of noncausal blurs, IEEE Trans. Acoust., Speech, Signal Process. ASSP-34, 963–972 (1986).CrossRefGoogle Scholar
  37. 37.
    S. Attasi, Modelling and recursive estimation for double indexed sequences, in System Identification: Advances and Case Studies (R. K. Mehra and D. G. Lainiotis, eds.), Academic Press, New York (1977).Google Scholar
  38. 38.
    M. R. Azimi-Sadjadi and P. W. Wong, Two-dimensional block Kaiman filtering for image restoration, IEEE Trans. Acoust., Speech, Signal Process. ASSP-35, 1736–1749 (1987).CrossRefGoogle Scholar
  39. 39.
    R. W. Gerchberg, Super-resolution through error energy reduction, Opt. Acta 21, 709–729 (1974).CrossRefGoogle Scholar
  40. 40.
    A. Papoulis, A new algorithm in spectral analysis and band-limited extrapolation, IEEE Trans. Circuits Syst. CAS-22, 735–742 (1975).MathSciNetCrossRefGoogle Scholar
  41. 41.
    V. T. Tom, T. F. Quatieri, M. H. Hayes, and J. H. McClellan, Convergence of iterative non-expansive signal reconstruction algorithms, IEEE Trans. Acoust., Speech, Signal Process. ASSP-29, 1052–1058 (1981).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Robert King
    • 1
  • Majid Ahmadi
    • 2
  • Raouf Gorgui-Naguib
    • 3
  • Alan Kwabwe
    • 4
  • Mahmood Azimi-Sadjadi
    • 5
  1. 1.Imperial CollegeLondonEngland
  2. 2.University of WindsorWindsorCanada
  3. 3.University of Newcastle upon TyneNewcastle upon TyneEngland
  4. 4.Imperial College and Bankers Trust CompanyLondonEngland
  5. 5.Colorado State UniversityFort CollinsUSA

Personalised recommendations