Discrete Time/Space Linear Filtering

  • Robert King
  • Majid Ahmadi
  • Raouf Gorgui-Naguib
  • Alan Kwabwe
  • Mahmood Azimi-Sadjadi


Digital filters in one, two, and many dimensions form a large class of systems used nowadays for the processing of both analogue and digital signals. We shall be considering in this book those digital systems classified as linear and time-invariant. Their properties, design, implementation, and applications will be discussed.


Fast Fourier Transform Impulse Response Discrete Fourier Transform Finite Impulse Response Digital Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. H. Kayran and R. A. King, Design of recursive and nonrecursive fan filters with complex transformations, IEEE Trans. Circuits Syst. CAS-30, 849–857 (1983).CrossRefGoogle Scholar
  2. 2.
    H. Chang and J. K. Aggarwal, Design of two-dimensional recursive filters by interpolation, IEEE Trans. Circuits Syst. CAS-24, 281–291 (1977).CrossRefGoogle Scholar
  3. 3.
    E. I. Jury, Theory and Application of the Z-Transform Method, John Wiley and Sons, New York (1964).Google Scholar
  4. 4.
    J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19, 297–301 (1965).MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    I. J. Good, The interaction algorithm and practical Fourier analysis, J. R. Stat. Soc, B 20, 361–372 (1958); 22, 372-375 (1960).MathSciNetzbMATHGoogle Scholar
  6. 6.
    G. D. Bergland, The fast Fourier transform recursive equations for arbitrary length records, Math. Comput. 21, 236–238 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    G. D. Bergland, A fast Fourier transform algorithm using base 8 iterations, Math. Comput. 22, 275–279 (1968).MathSciNetzbMATHGoogle Scholar
  8. 8.
    R. C. Singleton, On computing the fast Fourier transform, Commun. ACM 10, 647–654 (1967).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    R. C. Singleton, An algorithm for computing the mixed radix fast Fourier transform, IEEE Trans. Audio Electroacoust. AU-17, 93–103 (1969).CrossRefGoogle Scholar
  10. 10.
    W. M. Gentleman, Matrix multiplication and fast Fourier transforms, Bell Syst. Tech. J. 47, 1099–1103 (1968).zbMATHGoogle Scholar
  11. 11.
    W. M. Gentleman and G. Sande, Fast Fourier transform—for fun and profit, AFIPS Conf. Proc. 29, Fall Joint Computer Conf., Nov. 7–10, San Francisco, 563-578 (1966).Google Scholar
  12. 12.
    M. R. Azimi-Sadjadi, Block Implementation of Two-Dimensional Digital Filters, PhD Thesis, University of London (1981).Google Scholar
  13. 13.
    R. C. Agarwal and C. S. Burrus, Fast one-dimensional digital convolution by multidimensional techniques, IEEE Trans. Acousl., Speech, Signal Process ASSP-22, 1–10 (1974).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Robert King
    • 1
  • Majid Ahmadi
    • 2
  • Raouf Gorgui-Naguib
    • 3
  • Alan Kwabwe
    • 4
  • Mahmood Azimi-Sadjadi
    • 5
  1. 1.Imperial CollegeLondonEngland
  2. 2.University of WindsorWindsorCanada
  3. 3.University of Newcastle upon TyneNewcastle upon TyneEngland
  4. 4.Imperial College and Bankers Trust CompanyLondonEngland
  5. 5.Colorado State UniversityFort CollinsUSA

Personalised recommendations