Measurement of Volume Regulation

Renal Function
  • Bonita Falkner
Part of the The Springer Series in Behavioral Psychophysiology and Medicine book series (SSBP)

Abstract

Investigation of the involvement of the renal function in behavioral medicine is an area in which little study has been done to date. An overall concept of renal physiology is that the kidneys respond to excesses or deficits in nutrient and fluid supply by excretion or conservation. The kidneys adjust numerous specific functional parameters to maintain total body fluid and electrolyte homeostasis. The kidneys also respond to stimuli mediated through the autonomic nervous system and extrarenal hormonal factors. Unlike the cardiovascular response to similar stimuli which is quite rapid, the renal response to stimuli is slower. Renal adjustments to neurogenic Stressor or altered electrolyte loads will occur over hours to days. Therefore, methodologic issues addressing renal participation in behavior-related disorders will require a design which addresses means of investigating a system which functions under slower stimulus—response rate. This chapter will discuss the basic elements of renal function, and those which may be altered by behavioral factors. The standard methods of evaluating renal function and factors which effect functional variations will also be presented.

Keywords

Essential Hypertension Renal Blood Flow Urine Flow Tubular Reabsorption Distal Convoluted Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D. E., Kearns, W. D., & Worden, T. J. (1983a). Progressive hypertension in dogs by avoidance conditioning and saline infusions. Hypertension, 5, 286–291.PubMedCrossRefGoogle Scholar
  2. Anderson, D. E., Kearns, W. D., & Worden, T. J. (1983b). Potassium infusion attenuates avoidance saline hypertension in dogs. Hypertension, 5, 415–420.PubMedCrossRefGoogle Scholar
  3. Aronson, P. S. (1981). Identifying secondary active transport in epithelia. American Journal of Physiology, 45, F1–F11.Google Scholar
  4. Bargen, A. C., & Herd, J. A. (1971). The renal circulation. New England Journal of Medicine, 284, 482.CrossRefGoogle Scholar
  5. Baylis, C., & Brenner, B. M. (1978). The physiologic determinants of glomerular ultrafiltration. Reviews of Physiology, Biochemistry, and Pharmacology, 80, 1–46.Google Scholar
  6. Berne, R. M. (1952). Hemodynamics and sodium excretion of the denervated kidney in anesthesized and unanesthesized dog. American Journal of Physiology, 171, 148.PubMedGoogle Scholar
  7. Bianchi, G., Picotti, G. B., Bratchi, G., Cusi, D., Datti, M., Lupi, D. P., Ferrari, P., Barlassina, G., Colambo, G., & Cori, B. (1978). Familial hypertension and hormonal profile, renal hemodynamics, and body fluids of young normotensive subjects. Clinical Science and Molecular Medicine, 55, 367.Google Scholar
  8. Blaufox, M. D. (1972). Compartmental analysis of radi-orenogram on kinetics of 1-131 hippuran. Progress in Nuclear Medicine, 2, 107–124.PubMedGoogle Scholar
  9. Brenner, B. M., & Humes, H. D. (1977). Mechanics of glomerular ultrafiltration. New England Journal of Medicine, 297, 148–154.PubMedCrossRefGoogle Scholar
  10. Brenner, B. M., Zatz, R., & Ichikawa, I. (1986). The renal circulation. In B. M. Brenner & F. C. Rector, Jr. (Eds.), The kidney (3rd ed.). Philadelphia: Saunders.Google Scholar
  11. Burg, M. B. & Good, D. (1983). Sodium chloride coupled transport in mammalian nephrons. Annual Review of Physiology, 45, 533–547.PubMedCrossRefGoogle Scholar
  12. Burton-Opitz, R., & Lucas, D. R. (1981). The blood supply of the kidney: Vs the influence of the vagus nerve upon the vascularity of the left organ. Journal of Experimental Medicine, 13, 308.CrossRefGoogle Scholar
  13. DiBona, G. F. (1983). The function of the renal nerves. Reviews of Physiology, Biochemistry, and Pharmacology, 94, 75–181.CrossRefGoogle Scholar
  14. DiSalvo, J., & Fell, C. (1971). Changes in renal blood flow during renal nerve stimulation. Proceedings of the Society for Experimental Biology and Medicine, 136, 150.PubMedCrossRefGoogle Scholar
  15. Falkner, B., Onesti, G., & Angelakos, E. T. (1981). The effect of salt loading on the cardiovascular response to stress in adolescents. Hypertension, 3 (Suppl. II), 195–199.Google Scholar
  16. Falkner, B., Katz, S., Canessa, M., & Kushner, H. (1986). The response to long-term oral sodium loading in young blacks. Hypertension, 8 (Suppl. I), I165–I168.Google Scholar
  17. Fawcett, D. W. (1963). Comparative observations of the fine structure of blood capillaries. In J. L. Orbison & D. W. Smith (Eds.), The peripheral blood vessels. Baltimore: Williams & Wilkins.Google Scholar
  18. Fawcett, D. W. (1986). Textbook of histology (11th ed.). Philadelphia: Saunders.Google Scholar
  19. Fujita, T., & Ando, K. (1984). Hemodynamic and endocrine changes associated with potassium supplementation in sodium-loaded hypertensives. Hypertension, 6, 184–192.PubMedGoogle Scholar
  20. Gomer, S. K., & Zimmerman, B. G. (1972). Determination of sympathetic vasodilator responses during renal stimulation. Journal of Pharmacology and Experimental Therapeutics, 181, 75.PubMedGoogle Scholar
  21. Grantham, J. J. (1982). Studies of organic anion and cation transport in isolated segments of proximal tubules. Kidney International, 22, 519–525.PubMedCrossRefGoogle Scholar
  22. Handler, J. S., & Orloff, J. (1981). Antidiuretic hormone. Annual Review of Physiology, 42, 611–624.CrossRefGoogle Scholar
  23. Hepinstall, R. H. (1983). Pathology of the kidney (3rd ed.). Boston: Little, Brown.Google Scholar
  24. Herbert, S. C., Schafer, J. A., & Andreoli, T. E. (1981). Principles of membrane transport. In B. M. Brenner & F. C. Rector, Jr. (Eds.). The kidney (2nd ed.). Philadelphia: Saunders.Google Scholar
  25. Hollenberg, N. K., & Adams, D. F. (1974). Renal circulation in hypertensive disease. American Journal of Medicine, 60, 773.CrossRefGoogle Scholar
  26. Hollenberg, N. K., Williams, G. H., & Adams, D. F. (1981). Essential hypertension: Abnormal renal vascular and endocrine response to mild psychogenic stimulus. Hypertension, 3, 11.PubMedCrossRefGoogle Scholar
  27. Imai, M., & Nakamura, R. (1982). Function of distal convoluteci and connecting tubules studied by isolated nephron fragments. Kidney International, 22, 465–472.PubMedCrossRefGoogle Scholar
  28. Jamison, R. L., & Kriz, W. (1982). Urinary concentrating mechanism: Structure and function. London: Oxford University Press.Google Scholar
  29. Kokko, J. P. (1982). Transport characteristics of the thin limbs of Henle. Kidney International, 22, 449–453.PubMedCrossRefGoogle Scholar
  30. Light, K. C., Koepke, J. P., Obrist, P. A., & Willis, P. W. (1983). Psychological stress induces sodium and fluid retention in men at risk for hypertension. Science, 220, 429.PubMedCrossRefGoogle Scholar
  31. London, G. M., Safar, M. E., Sassard, J. D., Levenson, J. A., & Simon, A. C. (1984). Renal and systemic hemodynamics in sustained hypertension. Hypertension, 6, 743–754.PubMedCrossRefGoogle Scholar
  32. Pitts, R. F. (1974). Physiology of the kidney and body fluids (3rd ed.). Chicago: Year Book Medical.Google Scholar
  33. Pomeranz, B. H., Birtch, A. G., & Bargen, A. C. (1968). Neural control of intrarenal blood flow. American Journal of Physiology, 215, 1067.PubMedGoogle Scholar
  34. Skrabal, F., Herholz, H., Newyman, M., Hamberger, L., Ledochowski, M., Sporer, H., Hortnagl, H., Schwartz, X., & Schonitzer, D. (1984). Salt sensitivity in humans is linked to enhanced sympathetic responsivity to enhanced proximal tubular reabsorption. Hypertension, 6, 152–158.PubMedGoogle Scholar
  35. Spitzer, A. (1978). Renal physiology and functional development. In C. M. Edelman, Jr. (Ed.), Pediatric kidney diseases (Vol. 1). Boston: Little, Brown.Google Scholar
  36. Stokes, J. B. (1982). Ion transport by the cortical and outer medullary collecting tubule. Kidney International, 22, 473–484.PubMedCrossRefGoogle Scholar
  37. Sullivan, J. M., Ratts, T. E., Taylor, J. C., Kraus, D. H., Barton, B. R., Patrick, D. R., & Reed, S. W. (1980). Hemodynamic effects of dietary sodium in man. Hypertension, 2, 506.PubMedCrossRefGoogle Scholar
  38. Thurau, K., & Levine, D. Z. (1971). The renal circulation. In C. Roullier & A. F. Huiler (Eds.), The kidney (Vol. 3). New York: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Bonita Falkner
    • 1
  1. 1.Department of PediatricsHahnemann UniversityPhiladelphiaUSA

Personalised recommendations