Measurement of Blood Flow and Venous Distensibility

  • Erling A. Anderson
Part of the The Springer Series in Behavioral Psychophysiology and Medicine book series (SSBP)

Abstract

Measurement of arterial and venous function can provide important insights regarding hemodynamic responses to behavioral stimuli that cannot be obtained from measurement of systemic arterial pressure alone. This chapter describes the use of Doppler flow probes for measuring flow within single arteries or veins, laser Doppler probes for measuring skin blood flow, and venous occlusion plethysmography for measuring limb blood flow. Finally, the use of venous occlusion plethysmography to assess venous distensibility is described. The goal is to provide an overview of the techniques and their relative advantages and disadvantages. References are provided for those wishing to examine techniques in further detail.

Keywords

Blood Flow Velocity Venous Occlusion Doppler Probe Limb Volume Cutaneous Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abboud, F. M., Schmid, P. G., Heistad, D. D., & Mark, A. L. (1976). Regulation of peripheral and coronary circulations. In H. J. Levine (Ed.), Clinical cardiovascular physiology (pp. 143–205). New York: Grune & Stratton.Google Scholar
  2. Chauveau, M., Levy, B., Dessanges, J. F., Savin, E., Bailliart, O., & Martineaud, J. P. (1985). Quantitative Doppler blood flow measurement method and in vivo calibration. Cardiovascular Research, 19, 700–706.PubMedCrossRefGoogle Scholar
  3. Englehart, M., & Kristensen, J. K. (1983). Evaluation of cutaneous blood flow responses by 133Xenon washout and a laser-Doppler flowmeter. Journal of Investigative Dermatology, 80, 12–15.CrossRefGoogle Scholar
  4. Fitzgerald, D. E., O’Shaughnessy, A. M., & Keaveny, V. T. (1983). Pulsed Doppieri A classification of results of diameter, velocity and volume flow measurement in diseased common carotid arteries. Cardiovascular Research, 17, 122–126.PubMedCrossRefGoogle Scholar
  5. Formel, P. F., & Doyle, J. T. (1957). Rationale of venous occlusion plethysmography. Circulation Research, 5, 351–356.CrossRefGoogle Scholar
  6. Hyman, C., & Winsor, T. (1961). History of plethysmography. Journal of Cardiovascular Surgery, 35, 506–518.Google Scholar
  7. Johnson, J. M., Taylor, W. F., Shepherd, A. P., & Park, M. K. (1984). Laser-Doppler measurement of skin blood flow: Comparison with plethysmography. Journal of Applied Physiology, 56, 798–803.PubMedCrossRefGoogle Scholar
  8. Kontos, H. A., Richardson, D. W., & Patterson, J. L. (1966). Blood flow and metabolism of forearm muscle in man at rest and during sustained concentration. American Journal of Physiology, 211, 869.Google Scholar
  9. Levenson, J. A., Peronneau, P. A., Simon, A., & Safar, M. E. (1981). Pulsed Doppler: Determination of diameter, blood flow velocity, and volumic flow of brachial artery in man. Cardiovascular Research, 15, 164–170.PubMedCrossRefGoogle Scholar
  10. Levenson, J., Simon, A. C., Safar, M. E., Bouthier, J. D., & London, G. M. (1985). Elevation of brachial arterial blood velocity and volumic flow mediated by peripheral β-adre-noreceptors in patients with borderline hypertension. Circulation, 71, 663–668.PubMedCrossRefGoogle Scholar
  11. Lind, A. R., & Schmid, P. G. (1972). Comparison of volume and strain-gauge plethysmography during static effort. Journal of Applied Physiology, 32, 552–554.PubMedGoogle Scholar
  12. Mark, A. L., & Eckstein, J. W. (1968). Venomotor tone and central venous pressure. Medical Clinics of North America, 52, 1077–1090.PubMedGoogle Scholar
  13. Rowell, L. B. (1986). Human circulation regulation during physical stress. London: Oxford University Press.Google Scholar
  14. Samueloff, S. L., Bevegard, B. S., & Shepherd, J. T. (1966). Temporary arrest of circulation to a limb for the study of venomotor reactions in man. Journal of Applied Physiology, 21, 341.PubMedGoogle Scholar
  15. Shepherd, J. T., & Vanhoutte, P. M. (1979). The human cardiovascular system. New York: Raven Press.Google Scholar
  16. Shoor, P. M., Fronek, A., & Bernstein, E. F. (1979). Quantitative transcutaneous arterial velocity measurements with Doppler flowmeters. Archives of Surgery, 114, 922–928.PubMedCrossRefGoogle Scholar
  17. Siggaard-Anderson, J. (1970). Venous occlusion plethysmography on the calf. Danish Medical Bulletin, 77 (Suppl. I), 1–68.Google Scholar
  18. Sumner, D. S. (1982). Ultrasound. In R. F. Kempczinski & J. S. T. Yao (Eds.), Practical noninvasive vascular diagnosis (pp. 21–47). Chicago: Year Book Medical.Google Scholar
  19. Sumner, D. S. (1985). Volume plethysmography in vascular disease: An overview. In E. F. Bernstein (Ed.), Noninvasive diagnostic techniques in vascular disease (pp. 97–118). St. Louis: Mosby.Google Scholar
  20. Takeshita, A., & Mark, A. L. (1979). Decreased venous distensibility in borderline hypertension. Hypertension, 1, 202–206.PubMedCrossRefGoogle Scholar
  21. Whitney, R. J. (1953). The measurement of volume changes in human limbs. Journal of Physiology, 121, 1–27.PubMedGoogle Scholar
  22. Williams, R. B. (1984). Measurement of local blood flow during behavioral experiments: Principles and practice. In A. J. Herd, A. M. Gotto, P. G. Kaufmann, & S. M. Weiss (Eds.), Cardiovascular instrumentation. National Institutes of Health Publication No. 84-1654, pp. 207-217.Google Scholar
  23. Zwiebel, W. J. (Ed.). (1982). to vascular ultrasonography. New York: Grane & Stratton.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Erling A. Anderson
    • 1
  1. 1.Departments of Anesthesia and Internal Medicine, Cardiovascular and Clinical Research CentersUniversity of Iowa College of MedicineIowa CityUSA

Personalised recommendations