Hemodynamic Assessment and Pharmacologic Probes as Tools to Analyze Cardiovascular Reactivity

  • Stevo Julius
Part of the The Springer Series in Behavioral Psychophysiology and Medicine book series (SSBP)


The blood pressure and heart rate responses to a laboratory task are most frequently used to assess an individual’s cardiovascular reactivity. Information from such observation is useful for general categorization and for the delineation of subgroups of hyper- and hyporesponders. Measurement of systemic and regional hemodynamics further complements reactivity studies by providing important information about qualitative differences which are not necessarily reflected in the overall magnitude of the blood pressure response. Hollenberg, Williams, and Adams (1981) engaged patients with borderline hypertension and normotensive control subjects in resolving Ravens progressive matrices. The blood pressure responses to this challenge were similar in both groups, but patients with borderline hypertension had a significant decrease of renal blood flow. This observation, that renal vasculature tends to overrespond to the mental stress, provided important inference as to how behavioral factors might lead to hypertension. As Light, Koepke, Obrist, and Willis (1983) suggest, mental stress might cause excessive salt retention in patients with borderline hypertension. It is not difficult to visualize how sodium retention might lead to hypertension. Another example of the differential behavior of local vasculature was provided by Mark, Lawton, and Abboud (1975). They observed that chronic salt loading does not alter the mean blood pressure in borderline hypertensive and normotensive subjects, but the forearm vascular resistance in normotensive individuals decreased whereas in patients with borderline hypertension it increased.


Cardiac Output Heart Rate Response Blood Pressure Response Blood Pressure Variability Pharmacologic Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bravo, E. L., Tarazi, R. C., Fouad, F. M., Vidt, D. G., & Gifford, R. W. (1981). Clonidine-suppression test: A useful aid in the diagnosis of pheochromocytoma. New England Journal of Medicine, 305, 623–626.PubMedCrossRefGoogle Scholar
  2. Colfer, H. T., Cottier, C., Sanchez, R., & Julius, S. (1984). Evidence for the autoregulatory theory of blood pressure reduction by beta-adrenoreceptor blocking agents in hypertension. Hypertension, 6, 145–151.PubMedGoogle Scholar
  3. Conway, J., & Lauwers, P. (1960). Hemodynamic and hypotensive effects of long-term therapy with chlorothiazide. Circulation, 21, 21–27.PubMedCrossRefGoogle Scholar
  4. Dustan, H. P., Tarazi, R. C., & Bravo, E. L. (1972). Dependence of arterial pressure on intravascular volume in treated hypertensive patients. New England Journal of Medicine, 286, 861–866.PubMedCrossRefGoogle Scholar
  5. Esler, M., Zweifler, A., Randall, O., Julius, S., Bennett, J., & Rydelek, P. (1976). Suppression of sympathetic nervous function in low-renin essential hypertension. Lancet, 2, 115–118.PubMedCrossRefGoogle Scholar
  6. Esler, M., Julius, S., Zweifler, A., Randall, O., Harburg, E., Gardiner, H., & DeQuattro, V. (1977). Mild high-renin essential hypertension: Neurogenic human hypertension?. New England Journal of Medicine, 296, 405-411.PubMedCrossRefGoogle Scholar
  7. Esler, M., Zweifler, A., Randall, O., & DeQuattro, V. (1977). Pathophysiologic and pharmacokinetic determinants of the antihypertensive response to propranolol. Clinical Pharmacology and Therapeutics, 22, 299–308.PubMedGoogle Scholar
  8. Folkow, B. (1982). Physiological aspects of primary hypertension. Physiological Reviews, 62, 347–503.PubMedGoogle Scholar
  9. Frohlich, E. D., Tarazi, R. C., Dustan, H. P., & Page, I. H. (1968). The paradox of beta-adrenergic blockade in hypertension. Circulation, 37, 417–423.PubMedCrossRefGoogle Scholar
  10. Hollenberg, N. K., Williams, G. H., & Adams, D. F. (1981). Essential hypertension: Abnormal renal vascular and endocrine responses to a mild psychological stimulus. Hypertension, 3, 11–17.PubMedCrossRefGoogle Scholar
  11. Hollifield, J. W., Sherman, K., VanderZwagg, R., & Shand, D. G. (1976). Proposed mechanisms of propranolol’s antihypertensive effects in essential hypertension. New England Journal of Medicine, 295, 68–73.PubMedCrossRefGoogle Scholar
  12. Ibsen, H., Leth, A., Hollnagel, H., Kappelgaard, A. M., Damkjaer Nielsen, M., Christensen, N. J., & Giese, J. (1979). Renin angiotensin system and sympathetic nerve activity in mild essential hypertension: The functional significance of angiotensin II in untreated and thiazide treated hypertensive patients. Acta Medica Scandinavia, 625 (Suppl.), 97.Google Scholar
  13. Julius, S., & Conway, J. (1968). Hemodynamic studies in patients with borderline blood pressure elevation. Circulation, 38, 282–288.PubMedCrossRefGoogle Scholar
  14. Julius, S., Pascual, A. V., Sannerstedt, R., & Mitchell, C. (1971). Relationship between cardiac output and peripheral resistance in borderline hypertension. Circulation, 43, 382–390.PubMedCrossRefGoogle Scholar
  15. Julius, S., Pascual, A. V., Abbrecht, P., & London, R. (1972). Effect of beta-adrenergic blockade on plasma volume in human subjects. Proceedings of the Society for Experimental Biology and Medicine, 140, 982–985.PubMedCrossRefGoogle Scholar
  16. Julius, S., Randall, O. S., Esler, M. D., Kashima, T., Ellis, C. N., & Bennett, J. (1975). Altered cardiac responsiveness and regulation in the normal cardiac output type of borderline hypertension. Circulation Research, 36–57 (Suppl. I), I199–I207.CrossRefGoogle Scholar
  17. Laragh, J. H. (1976). Biochemistry of the renin axis; prostaglandins, indomethacin and renin; angiotensin blockade; beta-blockers as antirenin drugs. American Journal of Medicine, 60, 733–736.CrossRefGoogle Scholar
  18. Light, K. C., Koepke, J. P., Obrist, P. A., & Willis, P. W. (1983). Psychological stress induces sodium and fluid retention in men at high risk for hypertension. Science, 220, 429–431.PubMedCrossRefGoogle Scholar
  19. Lund-Johansen, P. (1967). Hemodynamics in early essential hypertension. Acta Medica Scandinavica, 482 (Suppl.), 1–105.Google Scholar
  20. Mark, A. L., Lawton, W. J., & Abboud, F. M. (1975). Effects of high and low sodium intake on arterial pressure and forearm vascular resistance in borderline hypertension. Circulation Research, 36–37 (Suppl. I), I194–I198.CrossRefGoogle Scholar
  21. Obrist, P. A., Langer, A. W., Light, K., & Koepke, J. P. (1983). Behavioral-cardiac interactions in hypertension. In D. S. Krantz, A. Baum, & J. E. Singer (Eds.), Handbook of psychology and cardiovascular disorders & behavior: Vol. 3. Health. Hillsdale, NJ: Erlbaum.Google Scholar
  22. Sannerstedt, R., & Julius, S. (1972). Systemic haemodynamics in borderline arterial hypertension: Response to static exercise before and under the influence of propranolol. Cardiovascular Research, 6, 398–403.PubMedCrossRefGoogle Scholar
  23. Sannerstedt, R., Julius, S., & Conway, J. (1970). Hemodynamic response to tilt and beta-adrenergic blockade in young patients with borderline hypertension. Circulation, 42, 1057–1064.PubMedCrossRefGoogle Scholar
  24. Widimsky, J., Fejfarova, M. H., & Fejfar, Z. (1957). Changes of cardiac output in hypertensive disease. Cardiologia, 31, 381–389.PubMedCrossRefGoogle Scholar
  25. Williams, R. B. (1986). Patterns of reactivity and stress. In K. A. Matthews, S. M. Weiss, T. Detre, T. M. Dembroski, B. Falkner, S. B. Manuch, & R. B. Williams (Eds.), Handbook of stress, reactivity and cardiovascular disease (pp. 109–125). New York: Wiley-Interscience.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Stevo Julius
    • 1
  1. 1.Division of Hypertension, Department of Internal MedicineUniversity of Michigan Medical CenterAnn ArborUSA

Personalised recommendations