Advertisement

Physical Stressors and Pharmacologic Manipulations

Neurohumoral and Hemodynamic Responses in Hypertension
  • Vincent DeQuattro
  • Debora De-Ping Lee
Part of the The Springer Series in Behavioral Psychophysiology and Medicine book series (SSBP)

Abstract

Muscular work increases oxygen demand; as a result, changes in heart rate, stroke volume, cardiac output, and peripheral vascular resistance, enhance blood flow to the active muscle groups. Cardiac output and flow to the exercising muscles increase linearly, while resistance increases in vascular beds of resting muscles. Centers in the cerebral cortex are linked to cardiovascular regulation via the brain stem, and accommodate both isometric and isotonic exercise (Stone, Dormer, Foreman, Thies, & Blair, 1985). Further, afferent fibers from the exercising muscles are integrated to mediate central control of the circulation. The various components involved in cardiovascular control during exercise, including the “central command” concept, are indicated in Figure 1.

Keywords

Maximum Voluntary Contraction Cold Pressor Test Isometric Exercise Pharmacologic Manipulation Lower Body Negative Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, M., & Smirk, F. H. (1937). Observations in man upon a blood pressure raising reflex arising from the voluntary muscles. Journal of Physiology (London), 89, 372–383.Google Scholar
  2. Asmussen, E., & Hansen, E. (1981). Uber den einflub statischer muskelarbeit auf atmung und kreislauf. Skandinavisches Archiv fuer Physiologie 78, 283–303.CrossRefGoogle Scholar
  3. Bevegard, B. S., & Shepherd, J. T. (1967). Regulation of the circulation during exercise in man. Physiological Reviews, 47, 178–213.PubMedGoogle Scholar
  4. Billman, G. E., Schwartz, P. J., & Stone, H. L. (1984). The effects of daily exercise on susceptibility to sudden cardiac death. Circulation, 69, 1182–1189.PubMedCrossRefGoogle Scholar
  5. Black, H. R. (1979). Nonpharmacologic therapy for hypertension. American Journal of Medicine, 66, 837–842.PubMedCrossRefGoogle Scholar
  6. Blomqvist, C. G., Lewis, S. F., Taylor, W. F., & Graham, R. M. (1981). Similarity of the hemodynamic responses to static and dynamic exercise of small muscle groups. Circulation Research, 48 (Suppl. I), I87–I92.PubMedGoogle Scholar
  7. Bruce, R. A. (1971). Exercise testing of patients with coronary heart disease. Annals of Clinical Research, 3, 323.PubMedGoogle Scholar
  8. Chidsey, C. A., Harrison, D. C., & Braunwald, E. (1962). Augmentation of the plasma nor-epinephrine response to exercise in patients with congestive heart failure. New England Journal of Medicine, 267, 650–654.PubMedCrossRefGoogle Scholar
  9. Cuddy, R. P., Smulyan, H., Keighley, J. F., Markason, C. R., & Eich, R. H. (1966). Hemodynamic and catecholamine changes during a standard cold pressor test. American Heart Journal, 71, 446–454.PubMedCrossRefGoogle Scholar
  10. DeQuattro, V. (1987). The effect of antihypertensive therapy on exercise tolerance. Practical Cardiology (Spec. Suppl.), 38-46.Google Scholar
  11. DeQuattro, V., Foti, A., DeOrtiz, H. K., DeGrau, A., DeQuattro, E., & Allen, J. (1986). The comparative antihypertensive and cardiac effects of guanadrel sulfate and propranolol during vigorous exercise. Practical Cardiology (Spec. Suppl.), 37-47.Google Scholar
  12. Dimsdale, J. E., Hartley, L. H., Guiney, T., Ruskin, J. N., & Greenblatt, D. (1984). Postexercise peril. Plasma catecholamines and exercise. Journal of the American Medical Association, 251, 630–632.PubMedCrossRefGoogle Scholar
  13. Eklund, B., Kaijser, L., & Knuttson, E. (1974). Blood flow in resting (contralateral) arm and leg during isometric contraction. Journal of Physiology (London), 240, 111–124.Google Scholar
  14. Eliasson, K. (1984). Borderline hypertension. Circulatory, sympathoadrenal and psychological reactions to stress. Acta Medica Scandinavica, Supplementum, 692, 7–90.Google Scholar
  15. Ellestad, M. H., & Wan, M. K. C. (1975). Predictive implications of stress testing. Follow-up of 2700 subjects after maximum treadmill stress testing. Circulation, 51, 363–369.PubMedCrossRefGoogle Scholar
  16. Ewing, D. J., Irving, J. B., Kerr, F., & Kirby, B. J. (1973). Static exercise in untreated systemic hypertension. British Heart Journal, 35, 413–421.PubMedCrossRefGoogle Scholar
  17. Ewing, D. J., Irving, J. B., Kerr, E., Wildsmith, J. A. W., & Clarke, B. F. (1974). Cardiovascular responses to sustained handgrip in normal subjects and in patients with diabetes mellitus: A test for autonomic function. Clinical Science and Molecular Medicine, 46, 295–306.PubMedGoogle Scholar
  18. Fixier, D. E., Laird, W. P., Browne, R., Fitzgerald, V., Wilson, S., & Vance, R. (1979). Response of hypertensive adolescents to dynamic and isometric exercise stress. Pediatrics, 64, 579–583.Google Scholar
  19. Goldschlager, N. (1982). Use of the treadmill test in the diagnosis of coronary artery disease in patients with chest pain. Annals of Internal Medicine, 97, 383–388.PubMedCrossRefGoogle Scholar
  20. Goldschlager, N., Selzer, A., & Cohn, K. (1976). Treadmill stress tests as indicators of presence and severity of coronary artery disease. Annals of internal Medicine, 85, 277–286.PubMedCrossRefGoogle Scholar
  21. Goldstraw, P. W., & Warren, D. J. (1985). The effect of age on the cardiovascular responses to isometric exercise: A test of autonomic function. Gerontology, 31, 54–58.PubMedCrossRefGoogle Scholar
  22. Hartling, O. J., Noer, I., Svendsen, T. L., Clausen, J. P., & Trap-Jensen, J. (1980). Selective and non-selective beta-adrenoceptor blockade in the human forearm. Clinical Science, 58, 279–286.PubMedGoogle Scholar
  23. Hines, E. A., Jr. (1940). The significance of vascular hype rreaction as measured by the cold-pressor test. American Heart Journal, 19, 408.CrossRefGoogle Scholar
  24. Hines, E. A., Jr., & Brown, G. E. (1936). The cold pressortest for measuring the reactivity of the blood pressure: Data concerning 571 normal and hypertensive subjects. American Heart Journal, 11, 1.CrossRefGoogle Scholar
  25. Jansson, E., Hjemdahl, P., & Kaijser, L. (1982). Diet induced changes in sympatho-adrenal activity during submaximal exercise in relation to substrate utilization in man. Acta Physiologica Scandinavica, 114, 171–178.PubMedCrossRefGoogle Scholar
  26. Kaufman, M. P., Rybicki, K. J., Waldrop, T. G., & Mitchell, J. H. (1984). Effect on arterial pressure of rhythmically contracting the hind-limb muscles of cats. Journal of Applied Physiology, 56, 1265–1271.PubMedGoogle Scholar
  27. Kennedy, H. L. (1981). Comparison of ambulatory electrocardiography and exercise testing. American Journal of Cardiology, 47, 1359–1365.PubMedCrossRefGoogle Scholar
  28. Lewis, S. F., Taylor, W. F., Graham, R. M., Schutte, J. E., Pettinger, W. A., & Blomqvist, C. G. (1980). Role of active muscle mass in adrenergic and hemodynamic exercise responses. Circulation, 62 (Suppl. II), III–202.Google Scholar
  29. Marsh, R. C., Hiatt, W. R., Brammell, H. L., & Horwitz. L. D. (1983). Attenuation of exercise conditioning by low dose beta-adrenergic receptor blockade. Journal of the American College of Cardiology, 3, 551–556.CrossRefGoogle Scholar
  30. Milanes, J., Romero, M., Hultgren, H. N., & Shettigar, U. (1986). Exercise tests and ventricular tachycardia. Western Journal of Medicine, 145, 473–476.PubMedGoogle Scholar
  31. Miura, Y., Haneda, T., Sato, T., Miyazawa, K., Sakuma, H., Kobayashi, K., Minai, K., Shirato, K., Honna, T., Takishima, T., & Yoshinaga, K. (1976). Piasi a catecholamine levels in the coronary sinus, aorta, and femoral vein of subjects undergoing cardiac catheterization at rest and during exercise. Japanese Circulation Journal, 40, 929–934.PubMedCrossRefGoogle Scholar
  32. Naughton, J., & Haider, R. (1973). Methods of exercise testing. In J. P. Naughton & H. K. Hellerstein (Eds.), Exercise testing and exercise training in coronary heart disease (pp. 79–91). New York: Academic Press.Google Scholar
  33. Podrid, P. J., Graboys, T. B., & Lown, B. (1981). Prognosis of medically treated patients with coronary-artery disease with profound ST segment depression during exercise testing. New England Journal of Medicine, 305, 1111–1116.PubMedCrossRefGoogle Scholar
  34. Port, S., Cobb, F. R., Coleman, R. E., & Jones, R. H. (1980). Effect of age on the response of the left ventricular ejection fraction to exercise. New England Journal of Medicine, 303, 1133–1137.PubMedCrossRefGoogle Scholar
  35. Raven, P. B., Rohm-Young, D., & Blomqvist, C. G. (1984). Physical fitness and cardiovascular response to lower body negative pressure. Journal of Applied Physiology, 56, 138–144.PubMedGoogle Scholar
  36. Riopel, D. A., Taylor, A. B., & Hohn, A. R. (1979). Blood pressure, heart rate, pressure-rate product and electrocardiographic changes in healthy children during treadmill exercise. American Journal of Cardiology, 44, 697–704.PubMedCrossRefGoogle Scholar
  37. Rochmis, P., & Blackburn, H. (1971). Exercise tests. A survey of procedures, safety and litigation experience in approximately 170,000 tests. Journal of the American Medical Association, 217, 1061–1066.PubMedCrossRefGoogle Scholar
  38. Roddie, I. C., & Shepherd, J. T. (1957). The effects of carotid artery compression in man with special reference to changes in vascular resistance in the limbs. Journal of Physiology (London), 139, 377–384.Google Scholar
  39. Rodeheffer, R. J., Gerstenblith, G., Becker, L. C., Fleg, J. L., Weisfeldt, M. L., & Lankatta, E. G. (1984). Exercise cardiac output is maintained with advanced age in healthy human subjects; cardiac dilation and increased stroke volume compensate for a diminished heart rate. Circulation, 69, 203–213.PubMedCrossRefGoogle Scholar
  40. Rusch, N. J., Shepherd, J. T., Webb, C. R., & Vanhoutte, P. M. (1981). Different behavior of the resistance vessels of the human calf and forearm during contralateral isometric exercise, mental stress, and abnormal respiratory movements. Circulation Research, 48 (Suppl. I), I118–I130.PubMedGoogle Scholar
  41. Shepherd, J. T., Blomqvist, C. G., Lind, A. R., Mitchell, J. H., & Saltin, B. (1981). Static (isometric) exercise. Circulation Research, 48 (Suppl I), I179–I188.PubMedGoogle Scholar
  42. Smith, M. S, & Flowers, N. C. (1986). Pitfalls in recording and interpreting exercise stress tests. Internal Medicine, 7, 153–161.Google Scholar
  43. Stone, H. L. (1977). Cardiac function and exercise training in conscious dogs. Journal of Applied Physiology, 42, 824–832.PubMedGoogle Scholar
  44. Stone, H. L., Dormer, K. J., Foreman, R. D., Thies, R., & Blair, R. W. (1985). Neural regulation of the cardiovascular system during exercise. Federation Proceedings, 44, 2271–2278.PubMedGoogle Scholar
  45. Stone, P. H., & Cohn, P. (1982). Exercise testing. In P. Cohn & J. Wynne (Eds.), Diagnostic methods in clinical cardiology. Boston: Little, Brown.Google Scholar
  46. Sullivan, P., Procci, W. R., DeQuattro, V., Schoentgen, S., Levine, D., Van der Meulen, J., & Bornheimer, J. F. (1981). Anger, anxiety, guilt and increased basal and stressinduced neurogenic tone: Causes or effects in primary hypertension?. Clinical Science, 61, 389s–392s.PubMedGoogle Scholar
  47. Sullivan, P., Schoentgen, S., DeQuattro, V., Procci, W., Levine, D., Van der Meulen, J., & Bornheimer, J. (1981). Anxiety, anger, and neurogenic tone at rest and in stress in patients with primary hypertension. Hypertension, 3 (Suppl. II), II119–II123.Google Scholar
  48. Udall, J. A., & Ellestad, M. H. (1977). Predictive implications of ventricular premature contractions associated with treadmill stress testing. Circulation, 56, 985–989.PubMedCrossRefGoogle Scholar
  49. Vasilomanolakis, E. C., & Kennedy, H. L. (1983). Ambulatory electrocardiography and exercise testing in cardiac disease. Practical Cardiology, 9, 205–222.Google Scholar
  50. Victor, R. G., Leimbach, W. N., Seals, D. R., Wallin, B. G., & Mark, A. L. (1987). Effects of the cold pressor test on muscle sympathetic nerve activity in humans. Hypertension, 9, 429–436.PubMedCrossRefGoogle Scholar
  51. Zenner, R. J., DeDecker, D. E., & Clement, D. L. (1980). Blood-pressure response to swimming in ice-cold water. Lancet, 2, 120–121.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Vincent DeQuattro
    • 1
  • Debora De-Ping Lee
    • 1
  1. 1.Department of MedicineUniversity of Southern California School of MedicineLos AngelesUSA

Personalised recommendations