Advertisement

Data Analysis of Ambulatory Blood Pressure Readings

Before p Values
  • L. A. Clark
  • L. Denby
  • D. Pregibon
Part of the The Springer Series in Behavioral Psychophysiology and Medicine book series (SSBP)

Abstract

The nature of ambulatory blood pressure (BP) monitoring is such that exploratory data analysis is both useful and necessary. In any study using ambulatory monitoring there are many sources of uncontrolled variability, including individual levels of BP, individual diurnal patterns of BP, individual physical activity patterns, individual mental activity (psychological) patterns, and artifactual readings. Failure to properly account for these sources of variation will typically obscure real effects in the data and can bias the estimates of the effects of primary interest. In this chapter we report our experience with the exploratory analysis which should precede the calculation of p values. Our experience has been primarily with large samples. When the sample size is large, computing resources can be severely strained and statistical significance (via a p value) takes a backseat to practical significance. We do not discuss the interpretation of significance tests in any detail but refer readers to the discussions by Ware, Mosteller, and Ingelfinger (1986) and Royall (1986).

Keywords

Diurnal Variation Blood Pressure Level Ambulatory Blood Pressure Ambulatory Monitoring Daily Activity Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, R.A., & Chambers, J. M. (1984). S: An interactive environment for data analysis and graphics. Belmont, CA: Wadsworth.Google Scholar
  2. Clark, L. A., Denby, L., Pregibon, D., Harshfield, G. A., Pickering, T. G., Blank, S., & Laragh, J. H. (1987a). A data based method for bivariate outlier detection: Application to automatic blood pressure recording devices. Psychophysiology, 24, 119–125.PubMedCrossRefGoogle Scholar
  3. Clark, L. A., Denby, L., Pregibon, D., Harshfield, G. A., Pickering, T. G., Blank, S., & Laragh, J. H. (1987b). A quantitative analysis of the effects of activity and time of day on the diurnal variations of blood pressure. Journal of Chronic Diseases, 40, 671–681.PubMedCrossRefGoogle Scholar
  4. Cleveland, W. S. (1985). The elements of graphing data. Belmont, CA: Wadsworth.Google Scholar
  5. Collomb, G. (1981). Estimation Non-Parametrique de la Regression: Revue Bibliographique. International Statistics Review, 49, 75–94.CrossRefGoogle Scholar
  6. Draper, N. R., & Smith, H. (1981). Applied regression analysis. New York: Wiley.Google Scholar
  7. Halberg, F., Halberg, E., Halberg, J., & Halberg, F. (1984). Chronobiologic assessment of human blood pressure variation in health and disease. In M. A. Weber & J. I. M. Drayer (Eds.), Ambulatory blood pressure monitoring (pp. 137–156). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  8. Hastie, T., & Tibshirani, R. (1986). Generalized additive models (with discussion). Statistical Science, 1, 297–318.CrossRefGoogle Scholar
  9. Healy, M. J. R. (1968). Multivariate normal plotting. Applied Statistics, 17, 157–161.CrossRefGoogle Scholar
  10. Marier, M. A., Jacob, R. G., Lehoczky, J. P., & Shapiro, A. P. (1988). The statistical analysis of treatment effects in 24-hour ambulatory blood pressure recordings. Statistics in Medicine, 7, 697–716.CrossRefGoogle Scholar
  11. McDonald, J. A. (1986). Periodic smoothing of time series. SIAM Journal of Scientific and Statistical Computing, 7, 665–688.CrossRefGoogle Scholar
  12. Millar-Craig, M. W., Bishop, C. N., & Raftery, E. B. (1978). Orcadian variation of blood pressure. Lancet, 1, 795.PubMedCrossRefGoogle Scholar
  13. Millar-Craig, M. W., Mann, S., Balasubramanian, V., & Raftery, E. G. (1978). Blood pressure circadian rhythm in essential hypertension. Clinical Science and Molecular Medicine, 55, 391s.Google Scholar
  14. Royall, R. M. (1986). The effect of sample size on the meaning of significance tests. American Statistician, 40, 313–315.Google Scholar
  15. Snedecor, G. W., & Cochran, W. G. (1967). Statistical methods (6th ed.). Ames: Iowa State University Press.Google Scholar
  16. Ware, J. H., Mosteller, F., & Ingelfinger, J. A. (1986). P values. In J. C. Bailar, III, & F. Mosteller (Eds.), Medical uses of statistics. Waltham, MA: NEJM Books.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • L. A. Clark
    • 1
  • L. Denby
    • 1
  • D. Pregibon
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations