Advertisement

Ambulatory Monitoring

Applications and Limitations
  • Thomas G. Pickering
Part of the The Springer Series in Behavioral Psychophysiology and Medicine book series (SSBP)

Abstract

The study of behavior has traditionally focused on two areas: (1) laboratory-based studies where the experimental situation can be rigidly controlled, and (2) field-based studies typified by ethologists’ observations of naturally occurring behavioral patterns. For the study of the role of behavior in causing or modifying human cardiovascular disease, both approaches are desirable. The former approach enables studies to be carried out under highly standardized conditions, but may be of questionable relevance to what goes on in real life. The latter approach has in the past suffered from limitations imposed by the difficulty of monitoring cardiovascular variables in free-ranging subjects. The development of ambulatory monitoring techniques has added a new dimension to these investigations, and enables a precise comparison between behavior and physiological variables in subjects who are engaged in their normal daily activities.

Keywords

Heart Rate Variability Ambulatory Blood Pressure Blood Pressure Monitoring Blood Pressure Variability Ambulatory Monitoring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfredson, L., Karasek, R., & Theorell, T. (1982). Myocardial infarction risk and psychosocial work environment: An analysis of the male Swedish working force. Social Science and Medicine, 16, 463–467.CrossRefGoogle Scholar
  2. Ambrosioni, E., Costa, F. V., & Borghi, C. (1982). Effects of moderate salt restriction on intralymphocytic sodium and pressor response to stress in borderline hypertension. Hypertension, 4, 789.PubMedCrossRefGoogle Scholar
  3. Aserinsky, E., & Kleitman, N. (1953). Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science, 118, 273–274.PubMedCrossRefGoogle Scholar
  4. Athassaniadis, D., Drayer, G. J., Honour, A. J., & Cranston, W. I. (1969). Variability of automatic blood pressure measurements over 24 hour period. Clinical Science, 36, 147–156.Google Scholar
  5. Bristow, J. D., Honour, A. J., Pickering, T. G., & Sleight, P. (1969). Cardiovascular and respiratory changes during sleep in normal and hypertensive subjects. Cardiovascular Research, 3, 476–487.PubMedCrossRefGoogle Scholar
  6. Calvert, A., Lown, B., & Gorlin, R. (1979). Ventricular premature beats and anatomically defined coronary heart disease. American Journal of Cardiology, 39, 627–633.CrossRefGoogle Scholar
  7. Campbell, S., Barry, J., Rebecca, G. S., Rocco, M. B., Nabel, E. G., Wayne, R. R., & Selwyn, A. P. (1986). Active transient myocardial ischemia during daily life in asymptomatic patients with positive exercise tests and coronary artery disease. American Journal of Cardiology, 57, 1010–1016.PubMedCrossRefGoogle Scholar
  8. Cellina, G. U., Honour, A. J., & Littler, W. A. (1975). Direct arterial pressure, heart rate, and electrocardiogram during cigarette smoking in unrestricted patients. American Heart Journal, 89, 18–25.PubMedCrossRefGoogle Scholar
  9. Clark, L. A., Denby, L., Pregibon, D., Harshfield, G. A., Pickering, T. G., Blank, S., & Laragh, J. H. (1987). A quantitative analysis of the effects of activity and time of day on the diurnal variations of blood pressure. Journal of Chronic Diseases, 40, 671–681.PubMedCrossRefGoogle Scholar
  10. Clement, D. L., De Pue, N., Jordaens, L. J., & Padret, L. (1985). Adrenergic and vagai influences on blood pressure variability. Clinical and Experimental Hypertension A7(2&3), 159–166.CrossRefGoogle Scholar
  11. Conway, J., Boon, N., Davies, C., Van Jones, J., & Sleight, P. (1984). Neural and humoral mechanisms involved in blood pressure variability. Journal of Hypertension, 2, 203–208.PubMedCrossRefGoogle Scholar
  12. Cowley, A. M., Liard, J. F., & Guyton, A. C. (1973). Role of the baroreceptor reflex in daily control of arterial blood pressure and other variables in dogs. Circulation Research, 32, 564.PubMedCrossRefGoogle Scholar
  13. Dembroski, T. M., & MacDougall, J. M. (1984). Validation of the Vita-Stat automated noninvasive ambulatory blood pressure recording device. In J. A. Herd, A. M. Gotto, P. G. Kaufmann, & S. M. Weiss (Eds.), Cardiovascular instrumentation (NIH Publication No. 84-1654, pp. 55-57).Google Scholar
  14. DiRienzo, M., Grassi, G., Pedotti, A., & Mancia, G. (1983). Continuous vs. intermittent blood pressure measurements in estimating 24-hour average blood pressure. Hypertension, 5, 264–269.CrossRefGoogle Scholar
  15. DiRienzo, M., Parati, G., Pomidossi, G., Veniani, M., Pedotti, A., & Mancia, G. (1985). Blood pressure monitoring over short day night times cannot predict 24-hour average blood pressure. Journal of Hypertension, 3, 343–349.CrossRefGoogle Scholar
  16. Foster, G. E., Evans, D. F., & Hardcastle, J. D. (1978). Heart rates of surgeons during operations and other clinical activities and their modification by oxprenolol. Lancet, 2, 1323–1325.CrossRefGoogle Scholar
  17. Friedman, E., Thomas, S. A., Kulick-Ciuffo, D., Lynch, J. J., & Suginahara, M. (1982). The effects of normal and rapid speech on blood pressure. Psychosomatic Medicine, 44, 545–553.Google Scholar
  18. Gottlieb, S. O., Weisfeldt, M. L., Ougang, P., Mellitus, E. D., & Gerstenblith, G. (1986). Silent ischemia as a marker for early unfavorable outcomes in patients with unstable angina. New England Journal of Medicine, 314, 1214–1219.PubMedCrossRefGoogle Scholar
  19. Gould, L., Zahir, M., DeMartino, A., & Gomprecht, R. F. (1971). The cardiac effects of a cocktail. Journal of the American Medical Association, 218, 1799–1802.PubMedCrossRefGoogle Scholar
  20. Harshfield, G. A., Pickering, T. G., Kleinert, H. D., Blank, S., & Laragh, J. H. (1982). Situational variation of blood pressure in ambulatory hypertensive patients. Psychosomatic Medicine, 44, 237–245.PubMedGoogle Scholar
  21. Harshfield, G. A., James, G. D., Schlussel, Y., Yee, L. S., Blank, S. G., & Pickering, T. G. (1988). Do laboratory tests of blood pressure reactivity predict blood pressure variability in real life?. American Journal of Hypertension, 1, 168–174.PubMedCrossRefGoogle Scholar
  22. Hines, E. A., & Brown, G. E. (1933). A standard test for measuring the variability of blood pressure: Its significance as an index of the prehypertensive state. Annals of internal Medicine, 7, 209.CrossRefGoogle Scholar
  23. Izzo, J. L., Ghosal, A., Kwong, T., Freeman, R. B., & Jaenike, J. R. (1983). Age and prior caffeine use alter the cardiovascular and adrenomedullary responses to oral caffeine. American Journal of Cardiology, 52, 769–773.PubMedCrossRefGoogle Scholar
  24. Jacob des Combes, B., Porchet, M., Waeber, B., & Brunner, H. R. (1984). Ambulatory blood pressure recordings: Reproducibility and unpredictability. Hypertension, 6, C110–115.CrossRefGoogle Scholar
  25. James, G. D., Yee, L. S., Harshfield, G. A., Blank, S. G., & Pickering T. G. (1986). The influence of happiness, anger, and anxiety on the blood pressure of borderline hypertensives. Psychosomatic Medicine, 48, 502–508.PubMedGoogle Scholar
  26. James, G. D., Pickering, T. G., Yee, L. S., Harshfield, G. A., & Laragh, J. H. (1988). The reproducibility of ambulatory, home, and clinic blood pressures in normotensive and borderline hypertensive subjects. Hypertension, 11, 545–549.PubMedCrossRefGoogle Scholar
  27. Kleitman, N. (1963). Sleep and wakefulness (p. 182). Chicago: University of Chicago Press.Google Scholar
  28. Klieger, R. E., Miller, J. P., Bigger, J. T., Moss, A. J. and the Multicenter Post-infarction Group. (1987). Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. American Journal of Cardiology, 59, 256–262.CrossRefGoogle Scholar
  29. Littler, W. A., Honour, A. J., & Sleight, P. (1974a). Direct arterial pressure, pulse rate, and electrocardiogram during micturition and defecation in unrestricted man. American Heart Journal, 88, 205–210.PubMedCrossRefGoogle Scholar
  30. Littler, W. A., Honour, A. J., & Sleight, P. (1974b). Direct arterial pressure, heart rate, and electrocardiogram during human coitus. Journal of Reproduction and Fertility, 40, 321–331.PubMedCrossRefGoogle Scholar
  31. Lipsitz, L. A., Nyquist, R. P., Wei, J. Y., & Rowe, J. W. (1983). Postprandial reduction in blood pressure in the elderly. New England Journal of Medicine, 309, 81–83.PubMedCrossRefGoogle Scholar
  32. Livnat, A., Zehr, J. E., & Broten, T. P. (1984). Ultradian oscillations in blood pressure and heart rate in free-running dogs. American Journal of Physiology, 246, R817–R824.PubMedGoogle Scholar
  33. Llabre, M. M., Ironson, G. H., Spiker, S. B., & Schneiderman, N. (1988). How many blood pressure measurements are enough? An application of generalizability theory to blood pressure reliability. Psychophysiology, 25, 97–106.PubMedCrossRefGoogle Scholar
  34. Magid, N. M., Martin, G. J., Kehoe, R. F., Zheutlin, T. A., Myers, G. A., Eckberg, D. L., Barnett, P. S., Weiss, J. S., Lescn, M., & Singer, D. H. (submitted). Diminished heart rate variability in patients with sudden cardiac death.Google Scholar
  35. Mann, S., Millar-Craig, M. W., Balasubramanian, V., Cashman, P. M. M., & Raftery, E. B. (1980). Ambulant blood pressure: Reproducibility and the assessment of interventions. Clinical Science, 59, 497–500.PubMedGoogle Scholar
  36. Mann, S., Altaian, D. G., Raftery, E. B., & Bannister, R. (1983). Circadian variation of blood pressure in autonomic failure. Circulation, 68, 477–483.PubMedCrossRefGoogle Scholar
  37. Mann, S., Millar-Craig, M. W., & Raftery, E. B. (1985). Superiority of 24-hour measurement of blood pressure over clinic values in determining prognosis in hypertension. Clinical and Experimental Exp. Hypertension, A7(2 & 3), 279–281.CrossRefGoogle Scholar
  38. Matthews, K. A., & Haynes, S. G. (1986). Type A behavior pattern and coronary disease risk: Update and critical evaluation. American Journal of Epidemiology, 123, 923–960.PubMedGoogle Scholar
  39. Matthews, K. A., Manuck, S. B., & Saab, P. G. (1986). Cardiovascular response of adolescents during a naturally occurring Stressor and their behavioral and psychophysiological predictors. Psychophysiology, 23, 198–209.PubMedCrossRefGoogle Scholar
  40. Millar-Craig, M. W., Bishop, C. N., & Raftery, E. B. (1978). Circadian variation of blood-pressure. Lancet, 1, 795–798.PubMedCrossRefGoogle Scholar
  41. Mills, J. N. (1966). Human circadian rhythms. Physiological Reviews, 46, 128–171.PubMedGoogle Scholar
  42. Mukharji, J., Rude, R. E., Poole, W. K., Gustafson, N., Thomas, L. J., Strauss, H. W., Jaffee, A. S., Muller, J. E., Roberts, R., Raabe D. S., Croft, C. H., Passamani, E., Braunwald, E., & Willerson, J. T. (1984). Risk factors for sudden death after acute myocardial infarction: Two-year follow-up. American Journal of Cardiology, 54, 31–36.PubMedCrossRefGoogle Scholar
  43. Orlando, J., Aronow, W. S., Cassidy, J., & Prakash, R. (1976). Effect of ethanol on angina pectoris. Annals of Internal Medicine, 84, 652–655.PubMedCrossRefGoogle Scholar
  44. O’Rourke, M. F. (1985). Basic concepts for the understanding of large arteries in hypertension. Journal of Cardiovascular Pharmacology, 7, S14–S21.PubMedCrossRefGoogle Scholar
  45. Orth-Gomer, K., Hogstedt, C., Bodin, L., & Söderholm, B. (1986). Frequency of extrasystoles in healthy male employees. British Heart Journal, 55, 259–264.PubMedCrossRefGoogle Scholar
  46. Palmer, R. F. (1981). Vascular compliance and pulsatile flow as determinants of vascular injury. In J. H. Laragh, F. R. Bühler, & D. W. Seldin (Eds.), Frontiers in hypertension research (pp. 396–400). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  47. Perloff, D., Sokolow, M., & Cowan, R. (1983). The prognostic value of ambulatory blood pressure. Journal of the American Medical Association, 249, 2792–2798.PubMedCrossRefGoogle Scholar
  48. Pickering, T. G. (1980). Sleep, circadian rhythms, and cardiovascular disease. Cardiovascular Review Reports, 1, 37–46.Google Scholar
  49. Pickering, T. G., & Devereux, R. (1987). Ambulatory monitoring of blood pressure as a predictor of cardiovascular risk. American Heart Journal, 114, 925–928.PubMedCrossRefGoogle Scholar
  50. Pickering, T. G., Johnston, J., & Honour, A. J. (1978). Comparison of the effects of sleep, exercise, and autonomic drugs on ventricular extrasystoles, using ambulatory monitoring of ECG and EEG. American Journal of Medicine, 65, 575–583.PubMedCrossRefGoogle Scholar
  51. Pickering, T. G., Harshfield, G. A., Kleinert, H. D., Blank, S., & Laragh, J. H. (1982). Blood pressure during normal daily activities, sleep, and exercise: Comparison of values in normal and hypertensive subjects. Journal of the American Medical Association, 247, 992–996.PubMedCrossRefGoogle Scholar
  52. Pickering, T. G., Harshfield, G. A., Devereux, R. B., & Laragh, J. H. (1985). What is the role of ambulatory blood pressure monitoring in the management of hypertensive patients?. Hypertension, 7, 171–177.PubMedCrossRefGoogle Scholar
  53. Redman, C. W. G., Beilin, L. J., & Bonnar, J. (1976). Reversed diurnal blood pressure rhythm in hypertensive pregnancies. Clinical Science and Molecular Medicine, 51, 687s–689s.Google Scholar
  54. Reeves, R. A., Shapiro, A. P., Thompson, M. E., & Johnson, A. M. (1986). Loss of nocturnal decline in blood pressure after cardiac transplantation. Circulation, 73, 401–408.PubMedCrossRefGoogle Scholar
  55. Robertson, D., Frolich, J. C., Carr, R. K., Watson, J. T., Hollifield, J. W., Shand, D. G., & Oates, J. A. (1978). Effects of caffeine on plasma renin activity, catecholamines and blood pressure. New England Journal of Medicine, 298, 181–186.PubMedCrossRefGoogle Scholar
  56. Ruberman, W., Weinblatt, E., Goldberg, J. E., Frank, C. W., & Shapiro, S. (1977). Ventricular premature beats and mortality after myocardial infarction. New England Journal of Medicine, 297, 750–757.PubMedCrossRefGoogle Scholar
  57. Schang, S. J., & Pepine, C. J. (1977). Transient asymptomatic S-T segment depression during daily activity. American Journal of Cardiology, 39, 396–402.PubMedCrossRefGoogle Scholar
  58. Schmieder, R., Rüddel, H., Langewitz, W., Neus, J., Wagner, O., & von Eiff, A. W. (1985). The influence of monotherapy with oxprenolol and nitrendipine on ambulatory blood pressure in hypertensives. Clinical and Experimental Hypertension, A7, 445–454.CrossRefGoogle Scholar
  59. Shimada, S. G., & Marsh, D. J. (1979). Oscillations in mean arterial blood pressure in conscious dogs. Circulation Research, 44, 692–700.PubMedCrossRefGoogle Scholar
  60. Stumpe, K. O., Kolloch, R., Vetter, H., Gramann, W., Krück, F., Ressel, C., & Higuchi, M. (1976). Acute and long-term studies of the mechanism of action of beta-blocking drugs in lowering blood pressure. American Journal of Medicine, 60, 853–856.PubMedCrossRefGoogle Scholar
  61. Taggart, P., Gibbons, D., & Somerville, W. (1969). Some effects of motor car driving on the normal and abnormal heart. British Medical Journal, 4, 130–134.PubMedCrossRefGoogle Scholar
  62. Thomas, S. A., Friedman, E., Lottes, L. S., Gresty, S., Miller, C., & Lynch, J. J. (1984). Changes in nurses’ blood pressure and heart rate while communicating. Research in Nursing and Health, 7, 119–126.PubMedCrossRefGoogle Scholar
  63. Van Citters, R. L., & Franklin, D. L. (1969). Cardiovascular performance of Alaska sled dogs during exercise. Circulation Research, 24, 33–42.PubMedCrossRefGoogle Scholar
  64. Waters, D. D., Miller, D. D., Bouchard, A., Bosch, X., & Theroux, P. (1984). Circadian variation in variant angina. American Journal of Cardiology, 54, 61–64.PubMedCrossRefGoogle Scholar
  65. Watson, R. D. S., Hamilton, C. A., Reid, J. L., & Littler, W. A. (1979). Changes in plasma norepinephrine, blood pressure and heart rate during physical activity in hypertensive man. Hypertension, 1, 34–346.CrossRefGoogle Scholar
  66. Watson, R. D. S., Stallard, T. J., & Littler, W. A. (1979). Influence of once-daily administration of β-adrenoceptor antagonists on arterial pressure and its variability. Lancet, 1, 1210–1213.PubMedCrossRefGoogle Scholar
  67. Weber, M. A., Drayer, J. I. M., Wyle, F. A., & De Young, J. L. (1982). Reproducibility of the whole-day blood pressure pattern in essential hypertension. Clinical and Experimental Hypertension, A4(8), 1377–1390.CrossRefGoogle Scholar
  68. Willich, S., Rocco, M., Toiler, G., Stone, P., Muller, J., & Levy, D. (1986). Circadian frequency distribution of sudden cardiac death: The Framingham heart study. Circulation, 74(Suppl. II), 11–268.Google Scholar
  69. Winkel, R. A. (1978). Antiarrhythmic drug effect mimicked by spontaneous variability of ventricular ectopy. Circulation, 57, 1116.CrossRefGoogle Scholar
  70. Wolf, E., Tzivoni, D., & Stern, S. (1974). Comparison of exercise tests and 24-hour ambulatory electrocardiographic monitoring in detection of ST-T changes. British Heart Journal, 36, 90–95.PubMedCrossRefGoogle Scholar
  71. Young, M. A., Rowlands, D. B., Stallard, T. H., Watson, R. D. S., & Littler, W. A. (1983). Effect of environment on blood pressure: Home versus hospital. British Medical Journal, 286, 1235–1236.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Thomas G. Pickering
    • 1
  1. 1.Department of Medicine, Cardiovascular CenterThe New York Hospital-Cornell Medical CenterNew YorkUSA

Personalised recommendations